import streamlit as st import pandas as pd import tempfile import os import json from pathlib import Path from langchain.schema import Document #from langchain.document_loaders import Document from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.chains import RetrievalQAWithSourcesChain from langchain import HuggingFacePipeline from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM USER_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/9904d9a0d445ab0488cf7395cb863cce7621d897/USER_AVATAR.png" BOT_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/991f4c6e4e1dc7a8e24876ca5aae5228bcdb4dba/Ataliba_Avatar.jpg" CHAT_HISTORY_FILE = Path("chat_memory.json") def load_chat_history(): if CHAT_HISTORY_FILE.exists(): with open(CHAT_HISTORY_FILE, "r") as f: return json.load(f) return [] def save_chat_history(history): with open(CHAT_HISTORY_FILE, "w") as f: json.dump(history, f) def preprocess_excel(file_path: str) -> pd.DataFrame: df_raw = pd.read_excel(file_path, sheet_name='Data Base', header=None) df = df_raw.iloc[4:].copy() df.columns = df.iloc[0] df = df[1:] df.dropna(how='all', inplace=True) df.dropna(axis=1, how='all', inplace=True) df.reset_index(drop=True, inplace=True) df.columns = df.columns.astype(str) return df def build_vectorstore_from_structured_records(df: pd.DataFrame): df.fillna("", inplace=True) records = [] for i, row in df.iterrows(): item_class = str(row.get("Item Class", "")).strip() job_done = str(row.get("Job Done", "")).strip() backlog = str(row.get("Backlog?", "")).strip() days = str(row.get("Days in Backlog", "")).strip() if not any([item_class, job_done, backlog, days]): continue sentence = f"Item Class {item_class} has status {job_done}, is in {backlog} backlog, and has {days} days." records.append(Document(page_content=sentence, metadata={"source": f"Row {i+1}"})) splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150) split_docs = splitter.split_documents(records) embeddings = HuggingFaceEmbeddings( model_name="sentence-transformers/all-MiniLM-l6-v2", model_kwargs={"device": "cpu"}, encode_kwargs={"normalize_embeddings": False} ) vectorstore = FAISS.from_documents(split_docs, embeddings) return vectorstore def create_qa_pipeline(vectorstore): model_id = "google/flan-t5-base" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSeq2SeqLM.from_pretrained(model_id) gen_pipeline = pipeline("text2text-generation", model=model, tokenizer=tokenizer, max_length=512) llm = HuggingFacePipeline(pipeline=gen_pipeline) retriever = vectorstore.as_retriever() qa = RetrievalQAWithSourcesChain.from_llm(llm=llm, retriever=retriever) return qa st.set_page_config(page_title="Excel-Aware RAG Chatbot", layout="wide") st.title("📊 Excel-Aware RAG Chatbot (Structured QA)") with st.sidebar: uploaded_file = st.file_uploader("Upload your Excel file (.xlsx or .xlsm with 'Data Base' sheet)", type=["xlsx", "xlsm"]) if st.button("🗑️ Clear Chat History"): st.session_state.chat_history = [] if CHAT_HISTORY_FILE.exists(): CHAT_HISTORY_FILE.unlink() st.rerun() if "chat_history" not in st.session_state: st.session_state.chat_history = load_chat_history() if uploaded_file is not None: with st.spinner("Processing and indexing your Excel sheet..."): with tempfile.NamedTemporaryFile(delete=False, suffix=".xlsm") as tmp_file: tmp_file.write(uploaded_file.read()) tmp_path = tmp_file.name try: df = preprocess_excel(tmp_path) vectorstore = build_vectorstore_from_structured_records(df) qa = create_qa_pipeline(vectorstore) st.success("✅ File processed and chatbot ready! Ask your questions below.") except Exception as e: st.error(f"❌ Error processing file: {e}") finally: os.remove(tmp_path) for message in st.session_state.chat_history: st.chat_message(message["role"], avatar=USER_AVATAR if message["role"] == "user" else BOT_AVATAR).markdown(message["content"]) user_prompt = st.chat_input("Ask about item classes, backlog, or status...") if user_prompt: st.session_state.chat_history.append({"role": "user", "content": user_prompt}) st.chat_message("user", avatar=USER_AVATAR).markdown(user_prompt) with st.chat_message("assistant", avatar=BOT_AVATAR): with st.spinner("Thinking..."): try: response = qa.invoke({"question": user_prompt}) final_response = response['answer'] sources = response.get('sources', '') placeholder = st.empty() streamed = "" for word in final_response.split(): streamed += word + " " placeholder.markdown(streamed + "▌") placeholder.markdown(f"**{final_response.strip()}**") if sources: st.markdown(f"📎 {sources}", unsafe_allow_html=True) st.session_state.chat_history.append({"role": "assistant", "content": final_response}) save_chat_history(st.session_state.chat_history) except Exception as e: st.error(f"❌ Error: {e}") else: st.info("Upload a file on the left to get started.")