File size: 24,133 Bytes
441a971 14b7025 441a971 4feedd8 441a971 3061070 441a971 24c102c 441a971 a0e424f 441a971 4feedd8 e016255 c3863e6 d372f8c 4feedd8 996e98c 4feedd8 3061070 4feedd8 3061070 4feedd8 f08ca73 4feedd8 3061070 4feedd8 441a971 3061070 4feedd8 441a971 4feedd8 441a971 4feedd8 441a971 f08ca73 441a971 3061070 441a971 f08ca73 441a971 b2bcd2d 4feedd8 3061070 4feedd8 f08ca73 4feedd8 f08ca73 4feedd8 f08ca73 b2bcd2d 27aadc7 47c1d36 e016255 47c1d36 27aadc7 b2bcd2d 8d6988a d372f8c b2bcd2d f08ca73 b2bcd2d 441a971 f08ca73 e016255 7027c1b 4feedd8 f08ca73 4feedd8 f08ca73 441a971 f08ca73 441a971 f08ca73 441a971 f08ca73 441a971 f08ca73 4feedd8 441a971 4feedd8 441a971 4feedd8 441a971 4feedd8 441a971 4feedd8 441a971 4feedd8 441a971 f08ca73 4feedd8 441a971 4feedd8 441a971 4feedd8 441a971 4feedd8 441a971 4feedd8 441a971 4feedd8 441a971 4feedd8 441a971 4feedd8 441a971 4feedd8 441a971 4feedd8 441a971 4feedd8 441a971 4feedd8 441a971 4feedd8 441a971 4feedd8 441a971 4feedd8 441a971 f08ca73 4feedd8 f08ca73 4feedd8 f08ca73 4feedd8 f08ca73 4feedd8 f08ca73 441a971 4feedd8 f08ca73 4feedd8 f08ca73 4feedd8 f08ca73 4feedd8 441a971 f08ca73 4feedd8 f08ca73 4feedd8 f08ca73 4feedd8 f08ca73 4feedd8 f08ca73 4feedd8 f08ca73 4feedd8 f08ca73 4feedd8 f08ca73 4feedd8 f08ca73 4feedd8 f08ca73 4feedd8 f08ca73 4feedd8 f08ca73 4feedd8 f08ca73 441a971 f08ca73 fb07c5d f08ca73 4feedd8 5bc9e8f 263c699 fb07c5d 441a971 f08ca73 441a971 f08ca73 467e805 f08ca73 4feedd8 f08ca73 4feedd8 f08ca73 441a971 f08ca73 441a971 f08ca73 441a971 f08ca73 b2bcd2d f08ca73 441a971 b2bcd2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 |
import gradio as gr
from PIL import Image
import os
from tensorflow import keras
from keras.models import load_model
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import Normalize
from io import BytesIO
import re
# import gradio
# import PIL
# import tensorflow as tf
# import numpy as np
# import matplotlib
# print("Gradio:", gradio.__version__)
# print("Pillow (PIL):", PIL.__version__)
# print("TensorFlow:", tf.__version__)
# print("NumPy:", np.__version__)
# print("Matplotlib:", matplotlib.__version__)
# Images path
path_main = 'Data/'
images_file = path_main + 'Scennarios init/Scennarios W'
# Load DL models
modelo_1ap = load_model(path_main + 'Models/modelo_1ap_app.keras')
modelo_2ap = load_model(path_main + 'Models/modelo_2ap_app.keras')
fontsize_t = 15
# Plan visualization
def load_plan_vi(mapa_seleccionado, uploaded_file):
if mapa_seleccionado == "Upload your own image" and uploaded_file is not None:
plan_image = Image.open(uploaded_file.name)
elif mapa_seleccionado == "Upload your own image" and uploaded_file is None:
# raise gradio.Warning("Deafult plan. Image was not loaded 😒.", duration=5)
image_plan_path1 = os.path.join(images_file, "80.JPG")
plan_image = Image.open(image_plan_path1)
else:
image_plan_path1 = os.path.join(images_file, mapa_seleccionado)
plan_image = Image.open(image_plan_path1)
plan_n = np.array(plan_image.convert('RGB'))
plt.imshow(plan_n)
plt.xticks(np.arange(0, 256, 50), fontsize=fontsize_t)
plt.yticks(np.arange(0, 256, 50), fontsize=fontsize_t)
plt.xlabel("X Coordinate [Pixels]", fontsize=fontsize_t)
plt.ylabel("Y Coordinate [Pixels]", fontsize=fontsize_t)
plt.show()
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
plan_im = Image.open(buf)
tick_positions = np.linspace(0, 256, 11)
tick_labels = ["0", "2", "4", "6", "8", "10", "12", "14", "16", "18", "20"]
plt.xticks(tick_positions, tick_labels)
buf = BytesIO()
plt.imshow(plan_n)
plt.xticks(tick_positions, tick_labels, fontsize=fontsize_t)
plt.yticks(tick_positions, tick_labels, fontsize=fontsize_t)
plt.xlabel("X Coordinate [meters]", fontsize=fontsize_t)
plt.ylabel("Y Coordinate [meters]", fontsize=fontsize_t)
plt.show()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
plan_im_meters = Image.open(buf)
return plan_im, plan_im_meters
def validate_coords(num_aps, coords):
matches = re.findall(r"\(\s*\d+\s*,\s*\d+\s*\)", coords)
if len(matches) > int(num_aps):
new_coords = ", ".join(matches[:int(num_aps)])
return new_coords
return coords
import re
def coordinates_process(texto, interference):
a = False
texto = re.sub(r'\s*,\s*', ', ', texto) # Normalizar espacios entre comas
texto = re.sub(r'\)\s*,\s*\(', '), (', texto) # Asegurarse de que las tuplas estén separadas por "), ("
texto = texto.strip() # Eliminar cualquier espacio en exceso al principio o al final
coordinates = texto.split("), ")
resultado = []
for coord in coordinates:
try:
coord = coord.replace("(", "").replace(")", "") # Eliminar paréntesis
x, y = map(int, coord.split(",")) # Convertir a enteros
if 0 <= x <= 255 and 0 <= y <= 255:
resultado.append((x, y))
else:
a = True
except ValueError:
a = True
if a:
resultado = [(0, 0), (0, 0), (0, 0)]
while len(resultado) < 3 and interference == True:
resultado.append((0, 0))
while len(resultado) < 5 and interference == False:
resultado.append((0, 0))
return resultado # Devolver como arreglo de tuplas
# plan images path
def plan_images_list():
return [file_ for file_ in os.listdir(images_file) if file_.endswith((".JPG", ".jpg", ".jpeg", ".png", ".PNG"))]
# MAIN FUNCTION ****************************************************************
def main_function(plan_name, uploaded_file, interference = True, aps_int = 0, aps_coor = '(0,0)',
apch1 = 0, apch6 = 0, apch11 = 0, coord1 = '(0,0)', coord6 = '(0,0)', coord11 = '(0,0)'):
plan_name = str(plan_name)
interference = bool(interference)
aps_int = int(aps_int)
aps_coor = str(aps_coor)
apch1 = int(apch1)
apch6 = int(apch6)
apch11 = int(apch11)
coord1 = str(coord1)
coord6 = str(coord6)
coord11 = str(coord11)
aps_coor = validate_coords(aps_int, aps_coor)
coord1 = validate_coords(apch1, coord1)
coord6 = validate_coords(apch6, coord6)
coord11 = validate_coords(apch11, coord11)
# **************************************************************************
imagencober = {}
prediction_rgb = np.zeros((256, 256))
for k in range(5):
plt.imshow(prediction_rgb, cmap='gray')
plt.title(f'No coverage', fontsize=fontsize_t + 2)
plt.axis("off")
# plt.show()
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
imagencober[k] = Image.open(buf)
# **************************************************************************
# Load plan
if plan_name == "Upload your own image" and uploaded_file is not None:
plan_image = np.array(Image.open(uploaded_file.name))/255
dimensiones = plan_image.shape
if len(dimensiones) > 2:
# raise gradio.Error("Error in dimensions of the uploaded image. Must [256,256,3] 💣🎆.", duration=5)
raise ValueError("Error in image size. Must [256,256].")
plan_grayscale = plan_image[:, :, 0]
plan_in = 1 - plan_grayscale
elif plan_name == "Upload your own image" and uploaded_file is None:
# raise gradio.Warning("Deafult plan processed. Image was not loaded 😒.", duration=5)
numero = "80"
plan_in = np.array(Image.open(f"{path_main}Scennarios init/Scennarios B/{numero}.png")) / 255
else:
numero = plan_name.split('.')[0]
plan_in = np.array(Image.open(f"{path_main}Scennarios init/Scennarios B/{numero}.png")) / 255
# Some variables init
deep_count = 0
deep_coverage = []
dimension = 256
if interference:
# if apch1 == 0 and apch6 == 0 and apch11 == 0:
# raise gradio.Warning("There are not APs for estimation 😒.", duration=5)
channels_c = [1, 6 , 11]
channels = 3
num_APs = np.zeros(channels, dtype=int)
num_APs[0] = apch1
num_APs[1] = apch6
num_APs[2] = apch11
aps_chs = np.zeros((dimension, dimension, channels))
coords = [coord1, coord6, coord11]
for att, channel in enumerate(range(channels)):
if num_APs[att] > 0:
coordinates = coordinates_process(coords[att], interference)
for x, y in coordinates:
if x != 0 and y != 0:
aps_chs[int(y), int(x), att] = 1
if not interference:
channels = aps_int
aps_chs = np.zeros((dimension, dimension, 5)) # Crear la matriz
coordinates = coordinates_process(aps_coor, interference)
for att, (x, y) in enumerate(coordinates):
if x != 0 and y != 0:
aps_chs[int(y), int(x), att] = 1
# Coverage process
deep_coverage = []
ap_images = []
layer_indices = []
for k in range(channels):
capa = aps_chs[:, :, k]
filas, columnas = np.where(capa == 1)
if len(filas) == 2:
# For 2 AP
deep_count += 1
layer_1 = np.zeros_like(capa)
layer_2 = np.zeros_like(capa)
layer_1[filas[0], columnas[0]] = 1
layer_2[filas[1], columnas[1]] = 1
datos_entrada = np.stack([plan_in, layer_1, layer_2], axis=-1)
prediction = modelo_2ap.predict(datos_entrada[np.newaxis, ...])[0]
elif len(filas) == 1:
# For 1 AP
deep_count += 1
layer_1 = np.zeros_like(capa)
layer_1[filas[0], columnas[0]] = 1
datos_entrada = np.stack([plan_in, layer_1], axis=-1)
prediction = modelo_1ap.predict(datos_entrada[np.newaxis, ...])[0]
else:
# Whitout AP
prediction = np.zeros((dimension,dimension,1))
# print(prediction.shape)
deep_coverage.append(prediction)
prediction_rgb = np.squeeze((Normalize()(prediction)))
ap_images.append(prediction_rgb)
if np.all(prediction == 0):
plt.imshow(prediction_rgb, cmap='gray')
plt.title(f'No coverage', fontsize=fontsize_t)
plt.axis("off")
plt.show()
else:
plt.imshow(prediction_rgb, cmap='jet')
if interference:
plt.title(f'Coverage CH {channels_c[k]}', fontsize=fontsize_t)
cbar = plt.colorbar(ticks=np.linspace(0, 1, num=6),)
cbar.set_label('SINR [dB]', fontsize=fontsize_t)
cbar.set_ticklabels(['-3.01', '20.29', '43.60', '66.90', '90.20', '113.51'])
if not interference:
plt.title(f'Coverage AP {k}', fontsize=fontsize_t)
cbar = plt.colorbar(ticks=np.linspace(0, 1, num=6),)
cbar.set_label('Power [dBm]', fontsize=fontsize_t)
cbar.set_ticklabels(['-94.94', '-70.75', '-46.56', '-22.38', '1.81', '26.00'])
cbar.ax.tick_params(labelsize=fontsize_t)
plt.axis("off")
plt.show()
# Save the plot to a buffer
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
# Convert buffer to an image
imagencober[k] = Image.open(buf)
# Final coverage
if deep_coverage:
deep_coverage = np.array(deep_coverage)
nor_matrix = np.max(deep_coverage, axis=0)
celdas = np.argmax(deep_coverage, axis=0)
resultado_rgb = np.squeeze((Normalize()(nor_matrix)))
plt.imshow(resultado_rgb, cmap='jet')
cbar = plt.colorbar(ticks=np.linspace(0, 1, num=6))
if interference:
cbar.set_label('SINR [dB]', fontsize=fontsize_t)
cbar.set_ticklabels(['-3.01', '20.29', '43.60', '66.90', '90.20', '113.51'])
if not interference:
cbar.set_label('Power [dBm]', fontsize=fontsize_t)
cbar.set_ticklabels(['-94.94', '-70.75', '-46.56', '-22.38', '1.81', '26.00'])
cbar.ax.tick_params(labelsize=fontsize_t)
plt.axis("off")
plt.show()
# Save the plot to a buffer
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
# Convert buffer to an image
imagen3 = Image.open(buf)
# **************************************************************************
if interference == True:
if num_APs[0] > 0 and num_APs[1] > 0 and num_APs[2] > 0:
cmap = plt.cm.colors.ListedColormap(['blue', 'red', 'green'])
plt.imshow(celdas, cmap=cmap)
cbar = plt.colorbar()
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['1', '6', '11'])
cbar.set_label('Cell ID', fontsize=fontsize_t)
cbar.ax.tick_params(labelsize=fontsize_t)
plt.axis("off")
plt.show()
# Save the plot to a buffer
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
# Convert buffer to an image
imagen4 = Image.open(buf)
elif num_APs[0] > 0 and num_APs[1] > 0:
cmap = plt.cm.colors.ListedColormap(['blue', 'red'])
plt.imshow(celdas, cmap=cmap)
cbar = plt.colorbar()
cbar.set_ticks([0, 1])
cbar.set_ticklabels(['1', '6'])
cbar.set_label('Cell ID', fontsize=fontsize_t)
cbar.ax.tick_params(labelsize=fontsize_t)
plt.axis("off")
plt.show()
# Save the plot to a buffer
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
# Convert buffer to an image
imagen4 = Image.open(buf)
elif num_APs[0] > 0 and num_APs[2] > 0:
cmap = plt.cm.colors.ListedColormap(['blue', 'red'])
plt.imshow(celdas, cmap=cmap)
cbar = plt.colorbar()
cbar.set_ticks([0, 1])
cbar.set_ticklabels(['1', '11'])
cbar.set_label('Cell ID', fontsize=fontsize_t)
cbar.ax.tick_params(labelsize=fontsize_t)
plt.axis("off")
plt.show()
# Save the plot to a buffer
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
# Convert buffer to an image
imagen4 = Image.open(buf)
elif num_APs[1] > 0 and num_APs[2] > 0:
cmap = plt.cm.colors.ListedColormap(['blue', 'red'])
plt.imshow(celdas, cmap=cmap)
cbar = plt.colorbar()
cbar.set_ticks([0, 1])
cbar.set_ticklabels(['6', '11'])
cbar.set_label('Cell ID', fontsize=fontsize_t)
cbar.ax.tick_params(labelsize=fontsize_t)
plt.axis("off")
plt.show()
# Save the plot to a buffer
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
# Convert buffer to an image
imagen4 = Image.open(buf)
else:
cmap = plt.cm.colors.ListedColormap(['blue'])
plt.imshow(celdas, cmap=cmap)
cbar = plt.colorbar()
cbar.set_ticks([0])
cbar.set_ticklabels(['1'])
cbar.set_label('Cell ID', fontsize=fontsize_t)
cbar.ax.tick_params(labelsize=fontsize_t)
plt.axis("off")
plt.show()
# Save the plot to a buffer
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
# Convert buffer to an image
imagen4 = Image.open(buf)
# **************************************************************************
if interference == False:
if aps_int == 5:
cmap = plt.cm.colors.ListedColormap(['blue', 'red', 'green', 'yellow', 'violet'])
plt.imshow(celdas, cmap=cmap)
cbar = plt.colorbar()
cbar.set_ticks([0, 1, 2, 3, 4])
cbar.set_ticklabels(['1', '2', '3', '4', '5'])
cbar.set_label('Cell ID', fontsize=fontsize_t)
cbar.ax.tick_params(labelsize=fontsize_t)
plt.axis("off")
plt.show()
# Save the plot to a buffer
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
# Convert buffer to an image
imagen4 = Image.open(buf)
elif aps_int == 4:
cmap = plt.cm.colors.ListedColormap(['blue', 'red', 'green', 'yellow'])
plt.imshow(celdas, cmap=cmap)
cbar = plt.colorbar()
cbar.set_ticks([0, 1, 2, 3])
cbar.set_ticklabels(['1', '2', '3', '4'])
cbar.set_label('Cell ID', fontsize=fontsize_t)
cbar.ax.tick_params(labelsize=fontsize_t)
plt.axis("off")
plt.show()
# Save the plot to a buffer
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
# Convert buffer to an image
imagen4 = Image.open(buf)
elif aps_int == 3:
cmap = plt.cm.colors.ListedColormap(['blue', 'red', 'green'])
plt.imshow(celdas, cmap=cmap)
cbar = plt.colorbar()
cbar.set_ticks([0, 1, 2])
cbar.set_ticklabels(['1', '2', '3'])
cbar.set_label('Cell ID', fontsize=fontsize_t)
cbar.ax.tick_params(labelsize=fontsize_t)
plt.axis("off")
plt.show()
# Save the plot to a buffer
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
# Convert buffer to an image
imagen4 = Image.open(buf)
elif aps_int == 2:
cmap = plt.cm.colors.ListedColormap(['blue', 'red'])
plt.imshow(celdas, cmap=cmap)
cbar = plt.colorbar()
cbar.set_ticks([0, 1])
cbar.set_ticklabels(['1', '2'])
cbar.set_label('Cell ID', fontsize=fontsize_t)
cbar.ax.tick_params(labelsize=fontsize_t)
plt.axis("off")
plt.show()
# Save the plot to a buffer
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
# Convert buffer to an image
imagen4 = Image.open(buf)
else:
cmap = plt.cm.colors.ListedColormap(['blue'])
plt.imshow(celdas, cmap=cmap)
cbar = plt.colorbar()
cbar.set_ticks([0])
cbar.set_ticklabels(['1'])
cbar.set_label('Cell ID', fontsize=fontsize_t)
cbar.ax.tick_params(labelsize=fontsize_t)
plt.axis("off")
plt.show()
# Save the plot to a buffer
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
# Convert buffer to an image
imagen4 = Image.open(buf)
# **************************************************************************
return [imagencober[0], imagencober[1], imagencober[2], imagencober[3], imagencober[4], imagen3, imagen4]
def update_interface(enable_interference):
if enable_interference:
return {
map_dropdown : gr.update(visible=True),
upload_image : gr.update(visible=True),
ch1_input: gr.update(visible=True),
ch6_input: gr.update(visible=True),
ch11_input: gr.update(visible=True),
coords_ch1_input: gr.update(visible=True),
coords_ch6_input: gr.update(visible=True),
coords_ch11_input: gr.update(visible=True),
button1: gr.update(visible=True),
button2: gr.update(visible=True),
image_ap1 : gr.update(visible=False),
image_ap2 : gr.update(visible=False),
image_ch1 : gr.update(visible=True),
image_ch6 : gr.update(visible=True),
image_ch11 : gr.update(visible=True),
simple_dropdown: gr.update(visible=False),
simple_coords: gr.update(visible=False)
}
else:
return {
map_dropdown: gr.update(visible=True),
upload_image : gr.update(visible=True),
ch1_input: gr.update(visible=False),
ch6_input: gr.update(visible=False),
ch11_input: gr.update(visible=False),
coords_ch1_input: gr.update(visible=False),
coords_ch6_input: gr.update(visible=False),
coords_ch11_input: gr.update(visible=False),
simple_dropdown: gr.update(visible=True, interactive=True),
simple_coords: gr.update(visible=True, interactive=True),
image_ap1 : gr.update(visible=True),
image_ap2 : gr.update(visible=True),
image_ch1 : gr.update(visible=True),
image_ch6 : gr.update(visible=True),
image_ch11 : gr.update(visible=True)
}
with gr.Blocks() as demo:
gr.Markdown(
"""
## Fast Indoor Radio Propagation Prediction using Deep Learning
This app uses deep learning models for radio map estimation (RME) with and without interference, simulating 2.4 GHz and 5 GHz bands. RME involves estimating the received RF power based on spatial information maps.
Instructions for use:
- A predefined list of indoor floor plans is available for use.
- You can upload your own indoor floor plan.
- Negative numbers are not allowed.
- The established format for the coordinates of each access point (AP) must be followed.
- A maximum of 2 APs per channel is allowed for the interference case.
- A maximum of 5 APs is allowed for the non-interference case.
- The uploaded plan must meet the dimensions [256,256], with free spaces as white pixels and walls as black pixels.
"""
)
enable_interference = gr.Checkbox(label="Enable Interference Analysis", value=True)
with gr.Row():
with gr.Column(scale=1):
map_dropdown = gr.Dropdown(choices=plan_images_list() + ["Upload your own image"], label="Select indoor plan", value="80.JPG")
upload_image = gr.File(label="Or upload your own image", file_types=[".JPG", ".jpg", ".jpeg", ".png", ".PNG"])
ch1_input = gr.Dropdown(choices=[i for i in range(0, 3)], label="Select APs CH 1", value=0)
ch6_input = gr.Dropdown(choices=[i for i in range(0, 3)], label="Select APs CH 6", value=0)
ch11_input = gr.Dropdown(choices=[i for i in range(0, 3)], label="Select APs CH 11", value=0)
coords_ch1_input = gr.Textbox(label="Coordinate CH 1", placeholder="Format (Pixels): (x1, y1), (x2, y2)")
coords_ch6_input = gr.Textbox(label="Coordinate CH 6", placeholder="Format (Pixels): (x1, y1), (x2, y2)")
coords_ch11_input = gr.Textbox(label="Coordinate CH 11", placeholder="Format (Pixels): (x1, y1), (x2, y2)")
simple_dropdown = gr.Dropdown(choices=[str(i) for i in range(1, 6)], label="Select APs number", visible=False)
simple_coords = gr.Textbox(label="Enter APs coordinates", placeholder="Format (Pixels): (x1, y1), (x1, y1)...", visible=False,)
button1 = gr.Button("Load plan")
button2 = gr.Button("Predict coverage")
with gr.Column(scale=3):
with gr.Row():
first_image_output = gr.Image(label="Plan image pixels")
second_image_output = gr.Image(label="Plan image meters")
with gr.Row():
image_ch1 = gr.Image(label="Coverage 1")
image_ch6 = gr.Image(label="Coverage 2")
image_ch11 = gr.Image(label="Coverage 3")
image_ap1 = gr.Image(label="Coverage 4", visible=False)
image_ap2 = gr.Image(label="Coverage 5", visible=False)
with gr.Row():
image_cover_final = gr.Image(label="Final coverage")
image_cells = gr.Image(label="Cells coverage")
enable_interference.change(update_interface, inputs=[enable_interference],
outputs=[map_dropdown, upload_image,
ch1_input, ch6_input, ch11_input,
coords_ch1_input, coords_ch6_input, coords_ch11_input,
button1, button2,
simple_dropdown, simple_coords,
image_ch1, image_ch6, image_ch11,
image_ap1, image_ap2])
button1.click(load_plan_vi,
inputs=[map_dropdown, upload_image], outputs=[first_image_output, second_image_output])
# Único bloque para el clic de button2
button2.click(main_function,
inputs=[map_dropdown,
upload_image,
enable_interference,
simple_dropdown,
simple_coords,
ch1_input, ch6_input, ch11_input,
coords_ch1_input, coords_ch6_input, coords_ch11_input],
outputs=[image_ch1, image_ch6, image_ch11, image_ap1, image_ap2, image_cover_final, image_cells])
demo.launch() |