Andres Johan Florez Gonzalez
commited on
Upload functional_wlan_design_gradio.py
Browse files- functional_wlan_design_gradio.py +372 -0
functional_wlan_design_gradio.py
ADDED
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Funcional WLAN_design_gradio.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1MIfY3UkK4eSXOiPx3gtMSPoZMtnyJxux
|
8 |
+
"""
|
9 |
+
|
10 |
+
from google.colab import drive
|
11 |
+
drive.mount('/content/drive')
|
12 |
+
|
13 |
+
# Commented out IPython magic to ensure Python compatibility.
|
14 |
+
# %%capture
|
15 |
+
# !pip install gradio
|
16 |
+
|
17 |
+
import gradio as gr
|
18 |
+
from PIL import Image
|
19 |
+
import os
|
20 |
+
from tensorflow.keras.models import load_model
|
21 |
+
import numpy as np
|
22 |
+
import matplotlib.pyplot as plt
|
23 |
+
from matplotlib.colors import Normalize
|
24 |
+
from io import BytesIO
|
25 |
+
|
26 |
+
# Images path
|
27 |
+
path_main = '/content/drive/Othercomputers/False-2-Tesis-Maestria /Phase-3-thesis/'
|
28 |
+
images_file = path_main + 'Scennarios init/Scennarios W'
|
29 |
+
|
30 |
+
# Load DL models
|
31 |
+
modelo_1ap = load_model(path_main + 'Models/SINR-2APs/modelo_1ap_app.keras')
|
32 |
+
modelo_2ap = load_model(path_main + 'Models/SINR-2APs/modelo_2ap_app.keras')
|
33 |
+
|
34 |
+
plt.rc('font', family='Times New Roman')
|
35 |
+
fontsize_t = 15
|
36 |
+
|
37 |
+
def coordinates_process(texto):
|
38 |
+
coordinates = texto.split("), ")
|
39 |
+
|
40 |
+
resultado = []
|
41 |
+
for coord in coordinates:
|
42 |
+
try:
|
43 |
+
coord = coord.replace("(", "").replace(")", "")
|
44 |
+
x, y = map(int, coord.split(","))
|
45 |
+
# Validate range
|
46 |
+
if 0 <= x <= 255 and 0 <= y <= 255:
|
47 |
+
resultado.append((x, y))
|
48 |
+
else:
|
49 |
+
return False
|
50 |
+
except ValueError:
|
51 |
+
return False
|
52 |
+
|
53 |
+
while len(resultado) < 3:
|
54 |
+
resultado.append((0, 0))
|
55 |
+
|
56 |
+
return resultado
|
57 |
+
|
58 |
+
# plan images path
|
59 |
+
def plan_images_list():
|
60 |
+
return [file_ for file_ in os.listdir(images_file) if file_.endswith((".JPG", ".jpg", ".jpeg", ".png"))]
|
61 |
+
|
62 |
+
# Valdate inputs
|
63 |
+
def validate_input(value):
|
64 |
+
if value == "" or value is None:
|
65 |
+
return 0
|
66 |
+
elif value >= 0 or value <= 2:
|
67 |
+
return value
|
68 |
+
|
69 |
+
# MAIN FUNCTION ****************************************************************
|
70 |
+
def main_function(plan_name, apch1, apch6, apch11, coord1, coord6, coord11):
|
71 |
+
image_plan_path = os.path.join(images_file, plan_name)
|
72 |
+
imagen1 = Image.open(image_plan_path)
|
73 |
+
|
74 |
+
# No negative number as input
|
75 |
+
if not (0 <= apch1 <= 2):
|
76 |
+
return False
|
77 |
+
if not (0 <= apch6 <= 2):
|
78 |
+
return False
|
79 |
+
if not (0 <= apch11 <= 2):
|
80 |
+
return False
|
81 |
+
|
82 |
+
# Some variables init
|
83 |
+
deep_count = 0
|
84 |
+
deep_coverage = []
|
85 |
+
channels = [1, 6, 11]
|
86 |
+
num_APs = np.zeros(len(channels), dtype=int)
|
87 |
+
num_APs[0] = apch1
|
88 |
+
num_APs[1] = apch6
|
89 |
+
num_APs[2] = apch11
|
90 |
+
dimension = 256
|
91 |
+
aps_chs = np.zeros((dimension, dimension, len(channels)))
|
92 |
+
|
93 |
+
# Load plan
|
94 |
+
numero = plan_name[:1]
|
95 |
+
plan_in = np.array(Image.open(f"{path_main}Scennarios init/Scennarios B/{numero}.png")) / 255
|
96 |
+
|
97 |
+
coords = [coord1, coord6, coord11]
|
98 |
+
for att, channel in enumerate(channels):
|
99 |
+
if num_APs[att] > 0:
|
100 |
+
coordinates = coordinates_process(coords[att])
|
101 |
+
for x, y in coordinates:
|
102 |
+
if x != 0 and y != 0:
|
103 |
+
aps_chs[int(y), int(x), att] = 1
|
104 |
+
|
105 |
+
# Coverage process
|
106 |
+
deep_coverage = []
|
107 |
+
ap_images = []
|
108 |
+
layer_indices = []
|
109 |
+
imagencober = {}
|
110 |
+
for k in range(len(channels)):
|
111 |
+
capa = aps_chs[:, :, k]
|
112 |
+
filas, columnas = np.where(capa == 1)
|
113 |
+
|
114 |
+
if len(filas) == 2:
|
115 |
+
# For 2 AP
|
116 |
+
deep_count += 1
|
117 |
+
layer_1 = np.zeros_like(capa)
|
118 |
+
layer_2 = np.zeros_like(capa)
|
119 |
+
layer_1[filas[0], columnas[0]] = 1
|
120 |
+
layer_2[filas[1], columnas[1]] = 1
|
121 |
+
|
122 |
+
datos_entrada = np.stack([plan_in, layer_1, layer_2], axis=-1)
|
123 |
+
prediction = modelo_2ap.predict(datos_entrada[np.newaxis, ...])[0]
|
124 |
+
|
125 |
+
elif len(filas) == 1:
|
126 |
+
# For 1 AP
|
127 |
+
deep_count += 1
|
128 |
+
layer_1 = np.zeros_like(capa)
|
129 |
+
layer_1[filas[0], columnas[0]] = 1
|
130 |
+
|
131 |
+
datos_entrada = np.stack([plan_in, layer_1], axis=-1)
|
132 |
+
prediction = modelo_1ap.predict(datos_entrada[np.newaxis, ...])[0]
|
133 |
+
|
134 |
+
else:
|
135 |
+
# Whitout AP
|
136 |
+
prediction = np.zeros((dimension,dimension,1))
|
137 |
+
|
138 |
+
# print(prediction.shape)
|
139 |
+
deep_coverage.append(prediction)
|
140 |
+
prediction_rgb = np.squeeze((Normalize()(prediction)))
|
141 |
+
ap_images.append(prediction_rgb) # Guardar la imagen de cobertura del AP
|
142 |
+
|
143 |
+
if np.all(prediction == 0):
|
144 |
+
plt.imshow(prediction_rgb)
|
145 |
+
plt.title('No coverage', fontsize=fontsize_t + 2, family='Times New Roman')
|
146 |
+
plt.axis("off")
|
147 |
+
else:
|
148 |
+
plt.imshow(prediction_rgb, cmap='jet')
|
149 |
+
cbar = plt.colorbar(ticks=np.linspace(0, 1, num=6),)
|
150 |
+
cbar.set_label('SINR [dB]', fontsize=fontsize_t, fontname='Times New Roman')
|
151 |
+
cbar.set_ticklabels(['-3.01', '20.29', '43.60', '66.90', '90.20', '113.51'])
|
152 |
+
cbar.ax.tick_params(labelsize=fontsize_t, labelfontfamily = 'Times New Roman')
|
153 |
+
plt.axis("off")
|
154 |
+
|
155 |
+
# Save the plot to a buffer
|
156 |
+
buf = BytesIO()
|
157 |
+
plt.savefig(buf, format='png')
|
158 |
+
buf.seek(0)
|
159 |
+
plt.close()
|
160 |
+
|
161 |
+
# Convert buffer to an image
|
162 |
+
imagencober[k] = Image.open(buf)
|
163 |
+
|
164 |
+
# Cell map estimation
|
165 |
+
layer_indices.append(np.argmax(prediction, axis=0))
|
166 |
+
|
167 |
+
# Final coverage
|
168 |
+
if deep_coverage:
|
169 |
+
deep_coverage = np.array(deep_coverage)
|
170 |
+
nor_matrix = np.max(deep_coverage, axis=0)
|
171 |
+
celdas = np.argmax(deep_coverage, axis=0)
|
172 |
+
|
173 |
+
resultado_rgb = np.squeeze((Normalize()(nor_matrix)))
|
174 |
+
|
175 |
+
plt.imshow(resultado_rgb, cmap='jet')
|
176 |
+
cbar = plt.colorbar(ticks=np.linspace(0, 1, num=6))
|
177 |
+
cbar.set_label('SINR [dB]', fontsize=fontsize_t, fontname='Times New Roman')
|
178 |
+
cbar.set_ticklabels(['-3.01', '20.29', '43.60', '66.90', '90.20', '113.51'])
|
179 |
+
cbar.ax.tick_params(labelsize=fontsize_t, labelfontfamily = 'Times New Roman')
|
180 |
+
plt.axis("off")
|
181 |
+
|
182 |
+
# Save the plot to a buffer
|
183 |
+
buf = BytesIO()
|
184 |
+
plt.savefig(buf, format='png')
|
185 |
+
buf.seek(0)
|
186 |
+
plt.close()
|
187 |
+
|
188 |
+
# Convert buffer to an image
|
189 |
+
imagen3 = Image.open(buf)
|
190 |
+
|
191 |
+
if num_APs[0] > 0 and num_APs[1] > 0 and num_APs[2] > 0:
|
192 |
+
cmap = plt.cm.colors.ListedColormap(['blue', 'red', 'green'])
|
193 |
+
plt.imshow(celdas, cmap=cmap)
|
194 |
+
cbar = plt.colorbar()
|
195 |
+
cbar.set_ticks([0, 1, 2])
|
196 |
+
cbar.set_ticklabels(['1', '6', '11'])
|
197 |
+
cbar.set_label('Cell ID', fontsize=fontsize_t, fontname='Times New Roman')
|
198 |
+
cbar.ax.tick_params(labelsize=fontsize_t, labelfontfamily = 'Times New Roman')
|
199 |
+
plt.axis("off")
|
200 |
+
|
201 |
+
# Save the plot to a buffer
|
202 |
+
buf = BytesIO()
|
203 |
+
plt.savefig(buf, format='png')
|
204 |
+
buf.seek(0)
|
205 |
+
plt.close()
|
206 |
+
|
207 |
+
# Convert buffer to an image
|
208 |
+
imagen4 = Image.open(buf)
|
209 |
+
|
210 |
+
elif num_APs[0] > 0 and num_APs[1] > 0:
|
211 |
+
cmap = plt.cm.colors.ListedColormap(['blue', 'red'])
|
212 |
+
plt.imshow(celdas, cmap=cmap)
|
213 |
+
cbar = plt.colorbar()
|
214 |
+
cbar.set_ticks([0, 1])
|
215 |
+
cbar.set_ticklabels(['1', '6'])
|
216 |
+
cbar.set_label('Cell ID', fontsize=fontsize_t, fontname='Times New Roman')
|
217 |
+
cbar.ax.tick_params(labelsize=fontsize_t, labelfontfamily = 'Times New Roman')
|
218 |
+
plt.axis("off")
|
219 |
+
|
220 |
+
# Save the plot to a buffer
|
221 |
+
buf = BytesIO()
|
222 |
+
plt.savefig(buf, format='png')
|
223 |
+
buf.seek(0)
|
224 |
+
plt.close()
|
225 |
+
|
226 |
+
# Convert buffer to an image
|
227 |
+
imagen4 = Image.open(buf)
|
228 |
+
|
229 |
+
elif num_APs[0] > 0 and num_APs[2] > 0:
|
230 |
+
cmap = plt.cm.colors.ListedColormap(['blue', 'red'])
|
231 |
+
plt.imshow(celdas, cmap=cmap)
|
232 |
+
cbar = plt.colorbar()
|
233 |
+
cbar.set_ticks([0, 1])
|
234 |
+
cbar.set_ticklabels(['1', '11'])
|
235 |
+
cbar.set_label('Cell ID', fontsize=fontsize_t, fontname='Times New Roman')
|
236 |
+
cbar.ax.tick_params(labelsize=fontsize_t, labelfontfamily = 'Times New Roman')
|
237 |
+
plt.axis("off")
|
238 |
+
|
239 |
+
# Save the plot to a buffer
|
240 |
+
buf = BytesIO()
|
241 |
+
plt.savefig(buf, format='png')
|
242 |
+
buf.seek(0)
|
243 |
+
plt.close()
|
244 |
+
|
245 |
+
# Convert buffer to an image
|
246 |
+
imagen4 = Image.open(buf)
|
247 |
+
|
248 |
+
elif num_APs[1] > 0 and num_APs[2] > 0:
|
249 |
+
cmap = plt.cm.colors.ListedColormap(['blue', 'red'])
|
250 |
+
plt.imshow(celdas, cmap=cmap)
|
251 |
+
cbar = plt.colorbar()
|
252 |
+
cbar.set_ticks([0, 1])
|
253 |
+
cbar.set_ticklabels(['6', '11'])
|
254 |
+
cbar.set_label('Cell ID', fontsize=fontsize_t, fontname='Times New Roman')
|
255 |
+
cbar.ax.tick_params(labelsize=fontsize_t, labelfontfamily = 'Times New Roman')
|
256 |
+
plt.axis("off")
|
257 |
+
|
258 |
+
# Save the plot to a buffer
|
259 |
+
buf = BytesIO()
|
260 |
+
plt.savefig(buf, format='png')
|
261 |
+
buf.seek(0)
|
262 |
+
plt.close()
|
263 |
+
|
264 |
+
# Convert buffer to an image
|
265 |
+
imagen4 = Image.open(buf)
|
266 |
+
|
267 |
+
else:
|
268 |
+
cmap = plt.cm.colors.ListedColormap(['blue'])
|
269 |
+
plt.imshow(celdas, cmap=cmap)
|
270 |
+
cbar = plt.colorbar()
|
271 |
+
cbar.set_ticks([0])
|
272 |
+
cbar.set_ticklabels(['1'])
|
273 |
+
cbar.set_label('Cell ID', fontsize=fontsize_t, fontname='Times New Roman')
|
274 |
+
cbar.ax.tick_params(labelsize=fontsize_t, labelfontfamily = 'Times New Roman')
|
275 |
+
plt.axis("off")
|
276 |
+
|
277 |
+
# Save the plot to a buffer
|
278 |
+
buf = BytesIO()
|
279 |
+
plt.savefig(buf, format='png')
|
280 |
+
buf.seek(0)
|
281 |
+
plt.close()
|
282 |
+
|
283 |
+
# Convert buffer to an image
|
284 |
+
imagen4 = Image.open(buf)
|
285 |
+
|
286 |
+
return [imagencober[0], imagencober[1], imagencober[2], imagen3, imagen4]
|
287 |
+
|
288 |
+
# plan visualization
|
289 |
+
def load_plan_vi(mapa_seleccionado):
|
290 |
+
|
291 |
+
image_plan_path1 = os.path.join(images_file, mapa_seleccionado)
|
292 |
+
plan_image = Image.open(image_plan_path1)
|
293 |
+
|
294 |
+
plan_n = np.array(plan_image.convert('RGB'))
|
295 |
+
plt.figure(figsize=(3, 3))
|
296 |
+
plt.imshow(plan_n)
|
297 |
+
plt.xticks(np.arange(0, 256, 50))
|
298 |
+
plt.yticks(np.arange(0, 256, 50))
|
299 |
+
|
300 |
+
# Save the plot to a buffer
|
301 |
+
buf = BytesIO()
|
302 |
+
plt.savefig(buf, format='png')
|
303 |
+
buf.seek(0)
|
304 |
+
plt.close()
|
305 |
+
|
306 |
+
# Convert buffer to an image
|
307 |
+
plan_im = Image.open(buf)
|
308 |
+
|
309 |
+
return plan_im
|
310 |
+
|
311 |
+
with gr.Blocks() as demo:
|
312 |
+
|
313 |
+
gr.Markdown("""
|
314 |
+
## Fast Radio Propagation Prediction in WLANs Using Deep Learning
|
315 |
+
This app use deep learning models to radio map estimation (RME). RME entails estimating the received RF power based on spatial information maps.
|
316 |
+
|
317 |
+
Instructions for use:
|
318 |
+
|
319 |
+
- A predefined list of indoor floor plans is available for use.
|
320 |
+
- A maximum of (255,255) pixels is allowed for image size.
|
321 |
+
- Negative numbers are not allowed.
|
322 |
+
- The established format for the coordinates of each access point (AP) must be maintained.
|
323 |
+
- A maximum of 2 APs are allowed per channel.
|
324 |
+
""")
|
325 |
+
|
326 |
+
with gr.Row():
|
327 |
+
# Input left panel
|
328 |
+
with gr.Column(scale=1): # Scale to resize
|
329 |
+
map_dropdown = gr.Dropdown(choices=plan_images_list(), label="Select indoor plan")
|
330 |
+
ch1_input = gr.Number(label="APs CH 1")
|
331 |
+
ch6_input = gr.Number(label="APs CH 6")
|
332 |
+
ch11_input = gr.Number(label="APs CH 11")
|
333 |
+
coords_ch1_input = gr.Textbox(label="Coordinate CH 1", placeholder="Format: (x1, y1), (x2, y2)")
|
334 |
+
coords_ch6_input = gr.Textbox(label="Coordinate CH 6", placeholder="Format: (x1, y1), (x2, y2)")
|
335 |
+
coords_ch11_input = gr.Textbox(label="Coordinate CH 11", placeholder="Format: (x1, y1), (x2, y2)")
|
336 |
+
button1 = gr.Button("Load plan")
|
337 |
+
button2 = gr.Button("Predict coverage")
|
338 |
+
|
339 |
+
# Rigth panel
|
340 |
+
a_images = 320 # Size putput images
|
341 |
+
|
342 |
+
with gr.Column(scale=3):
|
343 |
+
first_image_output = gr.Image(label="plan image", height=a_images, width=a_images)
|
344 |
+
# with gr.Row():
|
345 |
+
with gr.Row():
|
346 |
+
image_ch1 = gr.Image(label="CH 1 coverage", height=a_images, width=a_images)
|
347 |
+
image_ch6 = gr.Image(label="CH 6 coverage", height=a_images, width=a_images)
|
348 |
+
image_ch11 = gr.Image(label="CH 11 coverage", height=a_images, width=a_images)
|
349 |
+
|
350 |
+
with gr.Row():
|
351 |
+
image_cover_final = gr.Image(label="Final coverage", height=a_images, width=a_images)
|
352 |
+
image_cells = gr.Image(label="Cells coverage", height=a_images, width=a_images)
|
353 |
+
|
354 |
+
|
355 |
+
# Buttons
|
356 |
+
button1.click(load_plan_vi, inputs=[map_dropdown], outputs=first_image_output)
|
357 |
+
button2.click(
|
358 |
+
lambda map_dropdown, ch1, ch6, ch11, coords1, coords6, coords11: main_function(
|
359 |
+
map_dropdown,
|
360 |
+
validate_input(ch1),
|
361 |
+
validate_input(ch6),
|
362 |
+
validate_input(ch11),
|
363 |
+
coords1,
|
364 |
+
coords6,
|
365 |
+
coords11,
|
366 |
+
),
|
367 |
+
inputs=[map_dropdown, ch1_input, ch6_input, ch11_input, coords_ch1_input, coords_ch6_input, coords_ch11_input],
|
368 |
+
outputs=[image_ch1, image_ch6, image_ch11, image_cover_final, image_cells]
|
369 |
+
)
|
370 |
+
|
371 |
+
|
372 |
+
demo.launch()
|