Spaces:
Running
on
Zero
Running
on
Zero
import datasets | |
import numpy as np | |
import scipy.spatial | |
import scipy.special | |
import spaces | |
from sentence_transformers import CrossEncoder, SentenceTransformer | |
from table import BASE_REPO_ID | |
ds = datasets.load_dataset(BASE_REPO_ID, split="train") | |
ds = ds.rename_column("submission_number", "paper_id") | |
ds.add_faiss_index(column="embedding") | |
model = SentenceTransformer("all-MiniLM-L6-v2") | |
reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2") | |
def semantic_search( | |
query: str, candidate_pool_size: int = 300, score_threshold: float = 0.5 | |
) -> tuple[list[int], list[float]]: | |
query_vec = model.encode(query) | |
_, retrieved_data = ds.get_nearest_examples("embedding", query_vec, k=candidate_pool_size) | |
rerank_inputs = [ | |
[query, f"{title}\n{abstract}"] | |
for title, abstract in zip(retrieved_data["title"], retrieved_data["abstract"], strict=True) | |
] | |
rerank_scores = reranker.predict(rerank_inputs) | |
sorted_indices = np.argsort(rerank_scores)[::-1] | |
paper_ids = [] | |
scores = [] | |
for i in sorted_indices: | |
score = float(scipy.special.expit(rerank_scores[i])) | |
if score < score_threshold: | |
break | |
paper_ids.append(retrieved_data["paper_id"][i]) | |
scores.append(score) | |
return paper_ids, scores | |