Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,316 Bytes
f69892b 52de44b f69892b 52de44b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import datasets
import numpy as np
import scipy.spatial
import scipy.special
import spaces
from sentence_transformers import CrossEncoder, SentenceTransformer
from table import BASE_REPO_ID
ds = datasets.load_dataset(BASE_REPO_ID, split="train")
ds = ds.rename_column("submission_number", "paper_id")
ds.add_faiss_index(column="embedding")
model = SentenceTransformer("all-MiniLM-L6-v2")
reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
@spaces.GPU(duration=5)
def semantic_search(
query: str, candidate_pool_size: int = 300, score_threshold: float = 0.5
) -> tuple[list[int], list[float]]:
query_vec = model.encode(query)
_, retrieved_data = ds.get_nearest_examples("embedding", query_vec, k=candidate_pool_size)
rerank_inputs = [
[query, f"{title}\n{abstract}"]
for title, abstract in zip(retrieved_data["title"], retrieved_data["abstract"], strict=True)
]
rerank_scores = reranker.predict(rerank_inputs)
sorted_indices = np.argsort(rerank_scores)[::-1]
paper_ids = []
scores = []
for i in sorted_indices:
score = float(scipy.special.expit(rerank_scores[i]))
if score < score_threshold:
break
paper_ids.append(retrieved_data["paper_id"][i])
scores.append(score)
return paper_ids, scores
|