File size: 1,316 Bytes
f69892b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52de44b
 
 
f69892b
 
 
 
 
 
 
 
 
 
52de44b
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import datasets
import numpy as np
import scipy.spatial
import scipy.special
import spaces
from sentence_transformers import CrossEncoder, SentenceTransformer

from table import BASE_REPO_ID

ds = datasets.load_dataset(BASE_REPO_ID, split="train")
ds = ds.rename_column("submission_number", "paper_id")
ds.add_faiss_index(column="embedding")

model = SentenceTransformer("all-MiniLM-L6-v2")
reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")


@spaces.GPU(duration=5)
def semantic_search(
    query: str, candidate_pool_size: int = 300, score_threshold: float = 0.5
) -> tuple[list[int], list[float]]:
    query_vec = model.encode(query)
    _, retrieved_data = ds.get_nearest_examples("embedding", query_vec, k=candidate_pool_size)

    rerank_inputs = [
        [query, f"{title}\n{abstract}"]
        for title, abstract in zip(retrieved_data["title"], retrieved_data["abstract"], strict=True)
    ]
    rerank_scores = reranker.predict(rerank_inputs)
    sorted_indices = np.argsort(rerank_scores)[::-1]

    paper_ids = []
    scores = []
    for i in sorted_indices:
        score = float(scipy.special.expit(rerank_scores[i]))
        if score < score_threshold:
            break
        paper_ids.append(retrieved_data["paper_id"][i])
        scores.append(score)

    return paper_ids, scores