|
import os |
|
import gradio as gr |
|
import requests |
|
import inspect |
|
import pandas as pd |
|
|
|
|
|
DEFAULT_API_URL = "https://jofthomas-unit4-scoring.hf.space/" |
|
|
|
|
|
|
|
|
|
class BasicAgent: |
|
""" |
|
A very simple agent placeholder. |
|
It just returns a fixed string for any question. |
|
""" |
|
def __init__(self): |
|
print("BasicAgent initialized.") |
|
|
|
|
|
def __call__(self, question: str) -> str: |
|
""" |
|
The agent's logic to answer a question. |
|
This basic version ignores the question content. |
|
""" |
|
print(f"Agent received question (first 50 chars): {question[:50]}...") |
|
|
|
fixed_answer = "This is a default answer." |
|
print(f"Agent returning fixed answer: {fixed_answer}") |
|
return fixed_answer |
|
|
|
|
|
|
|
|
|
def __repr__(self) -> str: |
|
""" |
|
Return the source code required to reconstruct this agent. |
|
NOTE: This might be brittle. Using get_current_script_content is likely safer. |
|
""" |
|
imports = [ |
|
"import inspect\n" |
|
] |
|
try: |
|
class_source = inspect.getsource(BasicAgent) |
|
full_source = "\n".join(imports) + "\n" + class_source |
|
return full_source |
|
except Exception as e: |
|
print(f"Error getting source code via inspect: {e}") |
|
return f"# Could not get source via inspect: {e}" |
|
|
|
|
|
def get_current_script_content() -> str: |
|
"""Attempts to read and return the content of the currently running script.""" |
|
try: |
|
|
|
script_path = os.path.abspath(__file__) |
|
print(f"Reading script content from: {script_path}") |
|
with open(script_path, 'r', encoding='utf-8') as f: |
|
return f.read() |
|
except NameError: |
|
|
|
print("Warning: __file__ is not defined. Cannot read script content this way.") |
|
|
|
return "# Agent code unavailable: __file__ not defined" |
|
except FileNotFoundError: |
|
print(f"Warning: Script file '{script_path}' not found.") |
|
return f"# Agent code unavailable: Script file not found at {script_path}" |
|
except Exception as e: |
|
print(f"Error reading script file '{script_path}': {e}") |
|
return f"# Agent code unavailable: Error reading script file: {e}" |
|
|
|
|
|
def run_and_submit_all( profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs the BasicAgent on them, submits all answers, |
|
and displays the results. |
|
""" |
|
|
|
space_host = os.getenv("SPACE_HOST") |
|
hf_space_url = "Runtime: Locally or unknown environment (SPACE_HOST env var not found)" |
|
if space_host: |
|
|
|
hf_space_url = f"Runtime: Hugging Face Space (https://{space_host}.hf.space)" |
|
|
|
|
|
print("\n" + "="*60) |
|
print("Executing run_and_submit_all function...") |
|
print(hf_space_url) |
|
|
|
|
|
if profile: |
|
username= f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
print("="*60 + "\n") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
print("="*60 + "\n") |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
agent = BasicAgent() |
|
|
|
|
|
|
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
|
|
agent_code = get_current_script_content() |
|
if agent_code.startswith("# Agent code unavailable"): |
|
print("Warning: Using potentially incomplete agent code due to reading error.") |
|
|
|
|
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
|
|
except requests.exceptions.RequestException as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
except requests.exceptions.JSONDecodeError as e: |
|
print(f"Error decoding JSON response from questions endpoint: {e}") |
|
print(f"Response text: {response.text[:500]}") |
|
return f"Error decoding server response for questions: {e}", None |
|
except Exception as e: |
|
print(f"An unexpected error occurred fetching questions: {e}") |
|
return f"An unexpected error occurred fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
for item in questions_data: |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
|
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
|
|
try: |
|
submitted_answer = agent(question_text) |
|
answers_payload.append({ |
|
"task_id": task_id, |
|
"submitted_answer": submitted_answer |
|
}) |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": question_text, |
|
"Submitted Answer": submitted_answer |
|
}) |
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": question_text, |
|
"Submitted Answer": f"AGENT ERROR: {e}" |
|
}) |
|
|
|
|
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
|
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = { |
|
"username": username.strip(), |
|
"agent_code": agent_code, |
|
"answers": answers_payload |
|
} |
|
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
|
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
|
|
|
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
|
|
except requests.exceptions.HTTPError as e: |
|
error_detail = f"Server responded with status {e.response.status_code}." |
|
try: |
|
|
|
error_json = e.response.json() |
|
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" |
|
except requests.exceptions.JSONDecodeError: |
|
|
|
error_detail += f" Response: {e.response.text[:500]}" |
|
status_message = f"Submission Failed: {error_detail}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.Timeout: |
|
status_message = "Submission Failed: The request timed out." |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except requests.exceptions.RequestException as e: |
|
status_message = f"Submission Failed: Network error - {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
except Exception as e: |
|
status_message = f"An unexpected error occurred during submission: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
"Please clone this space, then modify the code to define your agent's logic within the `BasicAgent` class. " |
|
"Log in to your Hugging Face account using the button below. This uses your HF username for submission. " |
|
"Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score." |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
|
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
|
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" App should be available at: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally or not on standard HF Space runtime).") |
|
print(" App will likely be available at local URLs printed by Gradio below.") |
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
|
|
demo.launch(debug=True, share=False) |