File size: 12,589 Bytes
10e9b7d
 
eccf8e4
e80aab9
3c4371f
10e9b7d
e80aab9
335f9f4
e80aab9
31243f4
3e5c3a6
eccf8e4
31243f4
e80aab9
31243f4
 
e80aab9
31243f4
 
 
b5c6c62
31243f4
e80aab9
31243f4
 
e80aab9
31243f4
 
 
 
 
e80aab9
3c4371f
 
 
e80aab9
 
31243f4
3c4371f
e80aab9
 
3c4371f
e80aab9
3c4371f
 
 
 
 
 
 
e80aab9
 
4021bf3
 
 
 
 
 
 
 
 
3c4371f
 
 
4021bf3
 
 
 
 
 
 
 
 
b90251f
31243f4
 
 
 
3c4371f
 
 
 
 
 
 
 
 
 
 
 
 
7e4a06b
1ca9f65
3c4371f
7e4a06b
3c4371f
 
 
 
 
7e4a06b
 
31243f4
 
e80aab9
31243f4
 
 
3c4371f
 
 
31243f4
3c4371f
31243f4
3c4371f
 
 
 
 
 
 
 
31243f4
 
eccf8e4
31243f4
3c4371f
31243f4
 
3c4371f
 
31243f4
3c4371f
e80aab9
31243f4
 
3c4371f
 
 
 
 
31243f4
 
e80aab9
31243f4
 
 
3c4371f
31243f4
 
 
e80aab9
31243f4
 
 
e80aab9
31243f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
 
3c4371f
 
31243f4
 
 
e80aab9
 
3c4371f
31243f4
e80aab9
3c4371f
31243f4
e80aab9
31243f4
 
e80aab9
3c4371f
 
e80aab9
 
31243f4
 
 
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
 
e80aab9
3c4371f
e80aab9
3c4371f
e80aab9
3c4371f
e80aab9
3c4371f
 
 
31243f4
 
 
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
3c4371f
31243f4
 
 
 
e80aab9
 
 
 
31243f4
e80aab9
3c4371f
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
 
e80aab9
31243f4
3c4371f
31243f4
 
3c4371f
31243f4
e80aab9
 
 
3c4371f
 
 
 
 
 
 
 
 
 
 
31243f4
3c4371f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import os
import gradio as gr
import requests
import inspect # To get source code for __repr__
import pandas as pd

# --- Constants ---
DEFAULT_API_URL = "https://jofthomas-unit4-scoring.hf.space/" # Default URL for your FastAPI app

# --- Basic Agent Definition ---
## This is where you should implement your own agent and tools

class BasicAgent:
    """
    A very simple agent placeholder.
    It just returns a fixed string for any question.
    """
    def __init__(self):
        print("BasicAgent initialized.")
        # Add any setup if needed

    def __call__(self, question: str) -> str:
        """
        The agent's logic to answer a question.
        This basic version ignores the question content.
        """
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        # Replace this with actual logic if you were building a real agent
        fixed_answer = "This is a default answer."
        print(f"Agent returning fixed answer: {fixed_answer}")
        return fixed_answer

    # __repr__ seems intended to get the *source* code, not just representation
    # Let's keep it but note that get_current_script_content might be more robust
    # if the class definition changes significantly or relies on external state.
    def __repr__(self) -> str:
        """
        Return the source code required to reconstruct this agent.
        NOTE: This might be brittle. Using get_current_script_content is likely safer.
        """
        imports = [
            "import inspect\n"
        ]
        try:
            class_source = inspect.getsource(BasicAgent)
            full_source = "\n".join(imports) + "\n" + class_source
            return full_source
        except Exception as e:
            print(f"Error getting source code via inspect: {e}")
            return f"# Could not get source via inspect: {e}"

# --- Gradio UI and Logic ---
def get_current_script_content() -> str:
    """Attempts to read and return the content of the currently running script."""
    try:
        # __file__ holds the path to the current script
        script_path = os.path.abspath(__file__)
        print(f"Reading script content from: {script_path}")
        with open(script_path, 'r', encoding='utf-8') as f:
            return f.read()
    except NameError:
        # __file__ is not defined (e.g., running in an interactive interpreter or frozen app)
        print("Warning: __file__ is not defined. Cannot read script content this way.")
        # Fallback or alternative method could be added here if needed
        return "# Agent code unavailable: __file__ not defined"
    except FileNotFoundError:
        print(f"Warning: Script file '{script_path}' not found.")
        return f"# Agent code unavailable: Script file not found at {script_path}"
    except Exception as e:
        print(f"Error reading script file '{script_path}': {e}")
        return f"# Agent code unavailable: Error reading script file: {e}"


def run_and_submit_all( profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space URL and Print Environment Info ---
    space_host = os.getenv("SPACE_HOST")
    hf_space_url = "Runtime: Locally or unknown environment (SPACE_HOST env var not found)"
    if space_host:
         # Construct the standard URL format for HF Spaces
         hf_space_url = f"Runtime: Hugging Face Space (https://{space_host}.hf.space)"

    # Print runtime info at the start of the function execution
    print("\n" + "="*60)
    print("Executing run_and_submit_all function...")
    print(hf_space_url) # Print the determined runtime URL
    # --- End Environment Info ---

    if profile:
        username= f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        print("="*60 + "\n") # Close the separator block
        return "Please Login to Hugging Face with the button.", None # Return early

    print("="*60 + "\n") # Separator after initial checks if logged in

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate the Agent
    try:
        agent = BasicAgent()
        # Using get_current_script_content() is likely more reliable for submission
        # agent_code = agent.__repr__() # Keep if needed, but prefer file content
        # print(f"Agent Code via __repr__ (first 200): {agent_code[:200]}...") # Debug
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    # Get agent code by reading the current script file - generally more robust
    agent_code = get_current_script_content()
    if agent_code.startswith("# Agent code unavailable"):
        print("Warning: Using potentially incomplete agent code due to reading error.")
        # Optional: Fall back to agent.__repr__() if needed
        # agent_code = agent.__repr__()

    # 2. Fetch All Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx)
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
        # status_update = f"Fetched {len(questions_data)} questions. Running agent..." # For yield/streaming
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}") # Log response text for debugging
         return f"Error decoding server response for questions: {e}", None
    except Exception as e: # Catch other potential errors
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run Agent on Each Question
    results_log = [] # To store data for the results table
    answers_payload = [] # To store data for the submission API
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")

        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue

        try:
            submitted_answer = agent(question_text) # Call the agent's logic
            answers_payload.append({
                "task_id": task_id,
                "submitted_answer": submitted_answer
            })
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": submitted_answer
            })
        except Exception as e:
             print(f"Error running agent on task {task_id}: {e}")
             results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": f"AGENT ERROR: {e}"
            })
             # Decide if you want to submit agent errors or skip:
             # answers_payload.append({"task_id": task_id, "submitted_answer": f"AGENT ERROR: {e}"})

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        # Still show results log even if nothing submitted
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission
    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code, # Using the code read from file
        "answers": answers_payload
    }
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit to Leaderboard
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        # Ensure submission_data is serializable, agent_code should be string
        response = requests.post(submit_url, json=submission_data, timeout=60) # Increased timeout further
        response.raise_for_status()
        result_data = response.json()

        # Prepare final status message and results table
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df

    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            # Try to get more specific error detail from JSON response body
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            # If response is not JSON, use the raw text
            error_detail += f" Response: {e.response.text[:500]}" # Limit length
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log) # Show attempts even if submission failed
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e: # Catch unexpected errors during submission phase
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df


# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        "Please clone this space, then modify the code to define your agent's logic within the `BasicAgent` class. " # Clarified instructions
        "Log in to your Hugging Face account using the button below. This uses your HF username for submission. "
        "Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score."
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) 

    # --- Component Interaction ---
    # Use the profile information directly from the LoginButton state (implicitly passed)
    run_button.click(
        fn=run_and_submit_all,
        # Input is implicitly the profile data from LoginButton state
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   App should be available at: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally or not on standard HF Space runtime).")
        print("   App will likely be available at local URLs printed by Gradio below.")
    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    # Set share=False as the primary access point is the HF Space URL
    demo.launch(debug=True, share=False)