Spaces:
Running
on
Zero
Running
on
Zero
from diffsynth.models.wan_video_dit import flash_attention, WanModel | |
import torch.nn.functional as F | |
import torch.nn as nn | |
import torch | |
import os | |
from safetensors import safe_open | |
class AudioProjModel(nn.Module): | |
def __init__(self, audio_in_dim=1024, cross_attention_dim=1024): | |
super().__init__() | |
self.cross_attention_dim = cross_attention_dim | |
self.proj = torch.nn.Linear(audio_in_dim, cross_attention_dim, bias=False) | |
self.norm = torch.nn.LayerNorm(cross_attention_dim) | |
def forward(self, audio_embeds): | |
context_tokens = self.proj(audio_embeds) | |
context_tokens = self.norm(context_tokens) | |
return context_tokens # [B,L,C] | |
class WanCrossAttentionProcessor(nn.Module): | |
def __init__(self, context_dim, hidden_dim): | |
super().__init__() | |
self.context_dim = context_dim | |
self.hidden_dim = hidden_dim | |
self.k_proj = nn.Linear(context_dim, hidden_dim, bias=False) | |
self.v_proj = nn.Linear(context_dim, hidden_dim, bias=False) | |
nn.init.zeros_(self.k_proj.weight) | |
nn.init.zeros_(self.v_proj.weight) | |
def __call__( | |
self, | |
attn: nn.Module, | |
x: torch.Tensor, | |
context: torch.Tensor, | |
context_lens: torch.Tensor, | |
audio_proj: torch.Tensor, | |
audio_context_lens: torch.Tensor, | |
latents_num_frames: int = 21, | |
audio_scale: float = 1.0, | |
) -> torch.Tensor: | |
""" | |
x: [B, L1, C]. | |
context: [B, L2, C]. | |
context_lens: [B]. | |
audio_proj: [B, 21, L3, C] | |
audio_context_lens: [B*21]. | |
""" | |
context_img = context[:, :257] | |
context = context[:, 257:] | |
b, n, d = x.size(0), attn.num_heads, attn.head_dim | |
# compute query, key, value | |
q = attn.norm_q(attn.q(x)).view(b, -1, n, d) | |
k = attn.norm_k(attn.k(context)).view(b, -1, n, d) | |
v = attn.v(context).view(b, -1, n, d) | |
k_img = attn.norm_k_img(attn.k_img(context_img)).view(b, -1, n, d) | |
v_img = attn.v_img(context_img).view(b, -1, n, d) | |
img_x = flash_attention(q, k_img, v_img, k_lens=None) | |
# compute attention | |
x = flash_attention(q, k, v, k_lens=context_lens) | |
x = x.flatten(2) | |
img_x = img_x.flatten(2) | |
if len(audio_proj.shape) == 4: | |
audio_q = q.view(b * latents_num_frames, -1, n, d) # [b, 21, l1, n, d] | |
ip_key = self.k_proj(audio_proj).view(b * latents_num_frames, -1, n, d) | |
ip_value = self.v_proj(audio_proj).view(b * latents_num_frames, -1, n, d) | |
audio_x = flash_attention( | |
audio_q, ip_key, ip_value, k_lens=audio_context_lens | |
) | |
audio_x = audio_x.view(b, q.size(1), n, d) | |
audio_x = audio_x.flatten(2) | |
elif len(audio_proj.shape) == 3: | |
ip_key = self.k_proj(audio_proj).view(b, -1, n, d) | |
ip_value = self.v_proj(audio_proj).view(b, -1, n, d) | |
audio_x = flash_attention(q, ip_key, ip_value, k_lens=audio_context_lens) | |
audio_x = audio_x.flatten(2) | |
# output | |
x = x + img_x + audio_x * audio_scale | |
x = attn.o(x) | |
return x | |
class FantasyTalkingAudioConditionModel(nn.Module): | |
def __init__(self, wan_dit: WanModel, audio_in_dim: int, audio_proj_dim: int): | |
super().__init__() | |
self.audio_in_dim = audio_in_dim | |
self.audio_proj_dim = audio_proj_dim | |
# audio proj model | |
self.proj_model = self.init_proj(self.audio_proj_dim) | |
self.set_audio_processor(wan_dit) | |
def init_proj(self, cross_attention_dim=5120): | |
proj_model = AudioProjModel( | |
audio_in_dim=self.audio_in_dim, cross_attention_dim=cross_attention_dim | |
) | |
return proj_model | |
def set_audio_processor(self, wan_dit): | |
attn_procs = {} | |
for name in wan_dit.attn_processors.keys(): | |
attn_procs[name] = WanCrossAttentionProcessor( | |
context_dim=self.audio_proj_dim, hidden_dim=wan_dit.dim | |
) | |
wan_dit.set_attn_processor(attn_procs) | |
def load_audio_processor(self, ip_ckpt: str, wan_dit): | |
if os.path.splitext(ip_ckpt)[-1] == ".safetensors": | |
state_dict = {"proj_model": {}, "audio_processor": {}} | |
with safe_open(ip_ckpt, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
if key.startswith("proj_model."): | |
state_dict["proj_model"][key.replace("proj_model.", "")] = ( | |
f.get_tensor(key) | |
) | |
elif key.startswith("audio_processor."): | |
state_dict["audio_processor"][ | |
key.replace("audio_processor.", "") | |
] = f.get_tensor(key) | |
else: | |
state_dict = torch.load(ip_ckpt, map_location="cpu") | |
self.proj_model.load_state_dict(state_dict["proj_model"]) | |
wan_dit.load_state_dict(state_dict["audio_processor"], strict=False) | |
def get_proj_fea(self, audio_fea=None): | |
return self.proj_model(audio_fea) if audio_fea is not None else None | |
def split_audio_sequence(self, audio_proj_length, num_frames=81): | |
""" | |
Map the audio feature sequence to corresponding latent frame slices. | |
Args: | |
audio_proj_length (int): The total length of the audio feature sequence | |
(e.g., 173 in audio_proj[1, 173, 768]). | |
num_frames (int): The number of video frames in the training data (default: 81). | |
Returns: | |
list: A list of [start_idx, end_idx] pairs. Each pair represents the index range | |
(within the audio feature sequence) corresponding to a latent frame. | |
""" | |
# Average number of tokens per original video frame | |
tokens_per_frame = audio_proj_length / num_frames | |
# Each latent frame covers 4 video frames, and we want the center | |
tokens_per_latent_frame = tokens_per_frame * 4 | |
half_tokens = int(tokens_per_latent_frame / 2) | |
pos_indices = [] | |
for i in range(int((num_frames - 1) / 4) + 1): | |
if i == 0: | |
pos_indices.append(0) | |
else: | |
start_token = tokens_per_frame * ((i - 1) * 4 + 1) | |
end_token = tokens_per_frame * (i * 4 + 1) | |
center_token = int((start_token + end_token) / 2) - 1 | |
pos_indices.append(center_token) | |
# Build index ranges centered around each position | |
pos_idx_ranges = [[idx - half_tokens, idx + half_tokens] for idx in pos_indices] | |
# Adjust the first range to avoid negative start index | |
pos_idx_ranges[0] = [ | |
-(half_tokens * 2 - pos_idx_ranges[1][0]), | |
pos_idx_ranges[1][0], | |
] | |
return pos_idx_ranges | |
def split_tensor_with_padding(self, input_tensor, pos_idx_ranges, expand_length=0): | |
""" | |
Split the input tensor into subsequences based on index ranges, and apply right-side zero-padding | |
if the range exceeds the input boundaries. | |
Args: | |
input_tensor (Tensor): Input audio tensor of shape [1, L, 768]. | |
pos_idx_ranges (list): A list of index ranges, e.g. [[-7, 1], [1, 9], ..., [165, 173]]. | |
expand_length (int): Number of tokens to expand on both sides of each subsequence. | |
Returns: | |
sub_sequences (Tensor): A tensor of shape [1, F, L, 768], where L is the length after padding. | |
Each element is a padded subsequence. | |
k_lens (Tensor): A tensor of shape [F], representing the actual (unpadded) length of each subsequence. | |
Useful for ignoring padding tokens in attention masks. | |
""" | |
pos_idx_ranges = [ | |
[idx[0] - expand_length, idx[1] + expand_length] for idx in pos_idx_ranges | |
] | |
sub_sequences = [] | |
seq_len = input_tensor.size(1) # 173 | |
max_valid_idx = seq_len - 1 # 172 | |
k_lens_list = [] | |
for start, end in pos_idx_ranges: | |
# Calculate the fill amount | |
pad_front = max(-start, 0) | |
pad_back = max(end - max_valid_idx, 0) | |
# Calculate the start and end indices of the valid part | |
valid_start = max(start, 0) | |
valid_end = min(end, max_valid_idx) | |
# Extract the valid part | |
if valid_start <= valid_end: | |
valid_part = input_tensor[:, valid_start : valid_end + 1, :] | |
else: | |
valid_part = input_tensor.new_zeros( | |
(1, 0, input_tensor.size(2)) | |
) | |
# In the sequence dimension (the 1st dimension) perform padding | |
padded_subseq = F.pad( | |
valid_part, | |
(0, 0, 0, pad_back + pad_front, 0, 0), | |
mode="constant", | |
value=0, | |
) | |
k_lens_list.append(padded_subseq.size(-2) - pad_back - pad_front) | |
sub_sequences.append(padded_subseq) | |
return torch.stack(sub_sequences, dim=1), torch.tensor( | |
k_lens_list, dtype=torch.long | |
) | |