File size: 9,263 Bytes
282b272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from diffsynth.models.wan_video_dit import flash_attention, WanModel
import torch.nn.functional as F
import torch.nn as nn
import torch
import os
from safetensors import safe_open


class AudioProjModel(nn.Module):
    def __init__(self, audio_in_dim=1024, cross_attention_dim=1024):
        super().__init__()
        self.cross_attention_dim = cross_attention_dim
        self.proj = torch.nn.Linear(audio_in_dim, cross_attention_dim, bias=False)
        self.norm = torch.nn.LayerNorm(cross_attention_dim)

    def forward(self, audio_embeds):
        context_tokens = self.proj(audio_embeds)
        context_tokens = self.norm(context_tokens)
        return context_tokens  # [B,L,C]


class WanCrossAttentionProcessor(nn.Module):
    def __init__(self, context_dim, hidden_dim):
        super().__init__()

        self.context_dim = context_dim
        self.hidden_dim = hidden_dim

        self.k_proj = nn.Linear(context_dim, hidden_dim, bias=False)
        self.v_proj = nn.Linear(context_dim, hidden_dim, bias=False)

        nn.init.zeros_(self.k_proj.weight)
        nn.init.zeros_(self.v_proj.weight)

    def __call__(
        self,
        attn: nn.Module,
        x: torch.Tensor,
        context: torch.Tensor,
        context_lens: torch.Tensor,
        audio_proj: torch.Tensor,
        audio_context_lens: torch.Tensor,
        latents_num_frames: int = 21,
        audio_scale: float = 1.0,
    ) -> torch.Tensor:
        """
        x:              [B, L1, C].
        context:        [B, L2, C].
        context_lens:   [B].
        audio_proj:   [B, 21, L3, C]
        audio_context_lens: [B*21].
        """
        context_img = context[:, :257]
        context = context[:, 257:]
        b, n, d = x.size(0), attn.num_heads, attn.head_dim

        # compute query, key, value
        q = attn.norm_q(attn.q(x)).view(b, -1, n, d)
        k = attn.norm_k(attn.k(context)).view(b, -1, n, d)
        v = attn.v(context).view(b, -1, n, d)
        k_img = attn.norm_k_img(attn.k_img(context_img)).view(b, -1, n, d)
        v_img = attn.v_img(context_img).view(b, -1, n, d)
        img_x = flash_attention(q, k_img, v_img, k_lens=None)
        # compute attention
        x = flash_attention(q, k, v, k_lens=context_lens)
        x = x.flatten(2)
        img_x = img_x.flatten(2)

        if len(audio_proj.shape) == 4:
            audio_q = q.view(b * latents_num_frames, -1, n, d)  # [b, 21, l1, n, d]
            ip_key = self.k_proj(audio_proj).view(b * latents_num_frames, -1, n, d)
            ip_value = self.v_proj(audio_proj).view(b * latents_num_frames, -1, n, d)
            audio_x = flash_attention(
                audio_q, ip_key, ip_value, k_lens=audio_context_lens
            )
            audio_x = audio_x.view(b, q.size(1), n, d)
            audio_x = audio_x.flatten(2)
        elif len(audio_proj.shape) == 3:
            ip_key = self.k_proj(audio_proj).view(b, -1, n, d)
            ip_value = self.v_proj(audio_proj).view(b, -1, n, d)
            audio_x = flash_attention(q, ip_key, ip_value, k_lens=audio_context_lens)
            audio_x = audio_x.flatten(2)
        # output
        x = x + img_x + audio_x * audio_scale
        x = attn.o(x)
        return x


class FantasyTalkingAudioConditionModel(nn.Module):
    def __init__(self, wan_dit: WanModel, audio_in_dim: int, audio_proj_dim: int):
        super().__init__()

        self.audio_in_dim = audio_in_dim
        self.audio_proj_dim = audio_proj_dim

        # audio proj model
        self.proj_model = self.init_proj(self.audio_proj_dim)
        self.set_audio_processor(wan_dit)

    def init_proj(self, cross_attention_dim=5120):
        proj_model = AudioProjModel(
            audio_in_dim=self.audio_in_dim, cross_attention_dim=cross_attention_dim
        )
        return proj_model

    def set_audio_processor(self, wan_dit):
        attn_procs = {}
        for name in wan_dit.attn_processors.keys():
            attn_procs[name] = WanCrossAttentionProcessor(
                context_dim=self.audio_proj_dim, hidden_dim=wan_dit.dim
            )
        wan_dit.set_attn_processor(attn_procs)

    def load_audio_processor(self, ip_ckpt: str, wan_dit):
        if os.path.splitext(ip_ckpt)[-1] == ".safetensors":
            state_dict = {"proj_model": {}, "audio_processor": {}}
            with safe_open(ip_ckpt, framework="pt", device="cpu") as f:
                for key in f.keys():
                    if key.startswith("proj_model."):
                        state_dict["proj_model"][key.replace("proj_model.", "")] = (
                            f.get_tensor(key)
                        )
                    elif key.startswith("audio_processor."):
                        state_dict["audio_processor"][
                            key.replace("audio_processor.", "")
                        ] = f.get_tensor(key)
        else:
            state_dict = torch.load(ip_ckpt, map_location="cpu")
        self.proj_model.load_state_dict(state_dict["proj_model"])
        wan_dit.load_state_dict(state_dict["audio_processor"], strict=False)

    def get_proj_fea(self, audio_fea=None):

        return self.proj_model(audio_fea) if audio_fea is not None else None

    def split_audio_sequence(self, audio_proj_length, num_frames=81):
        """
        Map the audio feature sequence to corresponding latent frame slices.

        Args:
            audio_proj_length (int): The total length of the audio feature sequence
                                    (e.g., 173 in audio_proj[1, 173, 768]).
            num_frames (int): The number of video frames in the training data (default: 81).

        Returns:
            list: A list of [start_idx, end_idx] pairs. Each pair represents the index range
                (within the audio feature sequence) corresponding to a latent frame.
        """
        # Average number of tokens per original video frame
        tokens_per_frame = audio_proj_length / num_frames

        # Each latent frame covers 4 video frames, and we want the center
        tokens_per_latent_frame = tokens_per_frame * 4
        half_tokens = int(tokens_per_latent_frame / 2)

        pos_indices = []
        for i in range(int((num_frames - 1) / 4) + 1):
            if i == 0:
                pos_indices.append(0)
            else:
                start_token = tokens_per_frame * ((i - 1) * 4 + 1)
                end_token = tokens_per_frame * (i * 4 + 1)
                center_token = int((start_token + end_token) / 2) - 1
                pos_indices.append(center_token)

        # Build index ranges centered around each position
        pos_idx_ranges = [[idx - half_tokens, idx + half_tokens] for idx in pos_indices]

        # Adjust the first range to avoid negative start index
        pos_idx_ranges[0] = [
            -(half_tokens * 2 - pos_idx_ranges[1][0]),
            pos_idx_ranges[1][0],
        ]

        return pos_idx_ranges

    def split_tensor_with_padding(self, input_tensor, pos_idx_ranges, expand_length=0):
        """
        Split the input tensor into subsequences based on index ranges, and apply right-side zero-padding
        if the range exceeds the input boundaries.

        Args:
            input_tensor (Tensor): Input audio tensor of shape [1, L, 768].
            pos_idx_ranges (list): A list of index ranges, e.g. [[-7, 1], [1, 9], ..., [165, 173]].
            expand_length (int): Number of tokens to expand on both sides of each subsequence.

        Returns:
            sub_sequences (Tensor): A tensor of shape [1, F, L, 768], where L is the length after padding.
                                    Each element is a padded subsequence.
            k_lens (Tensor): A tensor of shape [F], representing the actual (unpadded) length of each subsequence.
                            Useful for ignoring padding tokens in attention masks.
        """
        pos_idx_ranges = [
            [idx[0] - expand_length, idx[1] + expand_length] for idx in pos_idx_ranges
        ]
        sub_sequences = []
        seq_len = input_tensor.size(1)  # 173
        max_valid_idx = seq_len - 1  # 172
        k_lens_list = []
        for start, end in pos_idx_ranges:
            # Calculate the fill amount
            pad_front = max(-start, 0)
            pad_back = max(end - max_valid_idx, 0)

            # Calculate the start and end indices of the valid part
            valid_start = max(start, 0)
            valid_end = min(end, max_valid_idx)

            # Extract the valid part
            if valid_start <= valid_end:
                valid_part = input_tensor[:, valid_start : valid_end + 1, :]
            else:
                valid_part = input_tensor.new_zeros(
                    (1, 0, input_tensor.size(2))
                )  

            # In the sequence dimension (the 1st dimension) perform padding
            padded_subseq = F.pad(
                valid_part,
                (0, 0, 0, pad_back + pad_front, 0, 0),
                mode="constant",
                value=0,
            )
            k_lens_list.append(padded_subseq.size(-2) - pad_back - pad_front)

            sub_sequences.append(padded_subseq)
        return torch.stack(sub_sequences, dim=1), torch.tensor(
            k_lens_list, dtype=torch.long
        )