Spaces:
Sleeping
Sleeping
File size: 4,416 Bytes
2a20c6b a9c7e25 cd2ca57 892e0a4 2a20c6b a9c7e25 cd2ca57 2a20c6b a9c7e25 0d944ef a9c7e25 0d944ef a9c7e25 0d944ef 892e0a4 2a20c6b a9c7e25 2a20c6b a9c7e25 2a20c6b a9c7e25 892e0a4 a9c7e25 188ef10 a9c7e25 892e0a4 a9c7e25 892e0a4 2a20c6b a9c7e25 2a20c6b a9c7e25 2a20c6b a9c7e25 2a20c6b a9c7e25 2a20c6b 5426913 a9c7e25 70cac6e a9c7e25 01cb892 2a20c6b 6982b56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import gradio as gr
from huggingface_hub import InferenceClient
import pymupdf
from duckduckgo_search import DDGS
from serpapi import GoogleSearch
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co./docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
# PDF Parsing
def extract_text_from_pdf(pdf_file):
doc = pymupdf.open(pdf_file)
text = " ".join([page.get_textpage().extractTEXT() for page in doc])
return text
# Web search fallback
def search_web(query):
with DDGS() as ddgs:
results = ddgs.text(query)
if results:
return results[0]["body"]
return "No relevant results found on the web."
def google_search(query):
params = {
"q": query,
"api_key": "b11d4a3660600e7e7f481b3288f107fbf993389a20125b0a97ebe7ab207854a5", # Replace this with your real key
"engine": "google",
}
search = GoogleSearch(params)
results = search.get_dict()
if "organic_results" in results:
# Combine top 3 results
summaries = []
for res in results["organic_results"][:3]:
title = res.get("title", "")
snippet = res.get("snippet", "")
summaries.append(f"{title}: {snippet}")
return "\n".join(summaries)
return None
SYSTEM_PROMPT = """
You are an intelligent and friendly AI assistant.
Your goals:
- Answer user questions clearly and concisely.
- If a PDF document is provided, use its content to give informed answers.
- For questions about recent or live topics (e.g., news, prices, events), you may perform a web search and summarize the result.
- If no document or web context is available, still try to help using general knowledge.
- Be honest if you don’t know something.
- Always be polite, helpful, and respectful.
"""
def respond(
message,
history: list[tuple[str, str]],
max_tokens=2048,
temperature=0.4,
top_p=0.1,
):
recent_keywords = [
"latest",
"today",
"current",
"now",
"recent",
"news",
"update",
"price",
"who won",
"what happened",
"trending",
"breaking",
"just in",
"new release",
"live",
"score",
"results",
"weather",
"forecast",
"report",
"market",
"stocks",
"crypto",
"rate",
"exchange",
"gold price",
"happening",
"event",
"updates",
"hot",
"viral",
"announcement",
"today's",
"this week",
"schedule",
"calendar",
"launch",
"drop",
"release date",
"opening",
"closing",
"deadline",
]
message_lower = message.lower()
messages = [{"role": "system", "content": SYSTEM_PROMPT}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
if any(kw in message_lower for kw in recent_keywords):
web_context = google_search(message)
if web_context:
# Inject web context as part of the user's query
message = f"{message}\n\n[Relevant web search results to help you answer]:\n{web_context}"
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond
# additional_inputs=[
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
)
if __name__ == "__main__":
demo.launch()
|