abubasith86 commited on
Commit
5426913
·
1 Parent(s): 9e78176
Files changed (1) hide show
  1. app.py +89 -119
app.py CHANGED
@@ -1,153 +1,123 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
- import pymupdf
4
  from duckduckgo_search import DDGS
5
  from serpapi import GoogleSearch
 
 
6
 
7
- """
8
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
9
- """
10
  client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
11
 
12
-
13
- # PDF Parsing
14
- def extract_text_from_pdf(pdf_file):
15
- doc = pymupdf.open(pdf_file)
16
- text = " ".join([page.get_textpage().extractTEXT() for page in doc])
17
- return text
18
-
19
-
20
- # Web search fallback
21
- def search_web(query):
22
- with DDGS() as ddgs:
23
- results = ddgs.text(query)
24
- if results:
25
- return results[0]["body"]
26
- return "No relevant results found on the web."
27
-
28
-
29
- def google_search(query):
30
- params = {
31
- "q": query,
32
- "api_key": "b11d4a3660600e7e7f481b3288f107fbf993389a20125b0a97ebe7ab207854a5", # Replace this with your real key
33
- "engine": "google",
34
- }
35
- search = GoogleSearch(params)
36
- results = search.get_dict()
37
- if "organic_results" in results:
38
- # Combine top 3 results
39
- summaries = []
40
- for res in results["organic_results"][:3]:
41
- title = res.get("title", "")
42
- snippet = res.get("snippet", "")
43
- summaries.append(f"{title}: {snippet}")
44
- return "\n".join(summaries)
45
- return None
46
-
47
-
48
  SYSTEM_PROMPT = """
49
- You are an intelligent and friendly AI assistant.
50
 
51
  Your goals:
52
- - Answer user questions clearly and concisely.
53
- - If a PDF document is provided, use its content to give informed answers.
54
- - For questions about recent or live topics (e.g., news, prices, events), you may perform a web search and summarize the result.
55
- - If no document or web context is available, still try to help using general knowledge.
56
- - Be honest if you don’t know something.
57
- - Always be polite, helpful, and respectful.
58
  """
59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
  def respond(
62
- message,
63
  history: list[tuple[str, str]],
64
- max_tokens=2048,
65
- temperature=0.4,
66
- top_p=0.1,
 
67
  ):
68
-
69
- recent_keywords = [
70
- "latest",
71
- "today",
72
- "current",
73
- "now",
74
- "recent",
75
- "news",
76
- "update",
77
- "price",
78
- "who won",
79
- "what happened",
80
- "trending",
81
- "breaking",
82
- "just in",
83
- "new release",
84
- "live",
85
- "score",
86
- "results",
87
- "weather",
88
- "forecast",
89
- "report",
90
- "market",
91
- "stocks",
92
- "crypto",
93
- "rate",
94
- "exchange",
95
- "gold price",
96
- "happening",
97
- "event",
98
- "updates",
99
- "hot",
100
- "viral",
101
- "announcement",
102
- "today's",
103
- "this week",
104
- "schedule",
105
- "calendar",
106
- "launch",
107
- "drop",
108
- "release date",
109
- "opening",
110
- "closing",
111
- "deadline",
112
- ]
113
-
114
  message_lower = message.lower()
115
 
116
- messages = [{"role": "system", "content": SYSTEM_PROMPT}]
 
 
 
117
 
118
- for val in history:
119
- if val[0]:
120
- messages.append({"role": "user", "content": val[0]})
121
- if val[1]:
122
- messages.append({"role": "assistant", "content": val[1]})
123
-
124
- if any(kw in message_lower for kw in recent_keywords):
125
- web_context = google_search(message)
126
  if web_context:
127
- # Inject web context as part of the user's query
128
- message = f"{message}\n\n[Relevant web search results to help you answer]:\n{web_context}"
129
 
 
 
 
 
130
  messages.append({"role": "user", "content": message})
131
 
132
- response = ""
133
-
134
- for message in client.chat_completion(
135
  messages,
136
- max_tokens=max_tokens,
137
  stream=True,
138
  temperature=temperature,
139
  top_p=top_p,
 
140
  ):
141
- token = message.choices[0].delta.content
 
 
142
 
143
- response += token
144
- yield response
145
 
 
 
146
 
147
- """
148
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
149
- """
150
- demo = gr.ChatInterface(respond)
 
 
 
 
 
151
 
152
  if __name__ == "__main__":
153
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ import fitz # pymupdf
4
  from duckduckgo_search import DDGS
5
  from serpapi import GoogleSearch
6
+ import tempfile
7
+ import os
8
 
 
 
 
9
  client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  SYSTEM_PROMPT = """
12
+ You are an intelligent and friendly AI assistant.
13
 
14
  Your goals:
15
+ - Use provided documents to answer questions accurately.
16
+ - When the query is recent or about current events, leverage web search results.
17
+ - If nothing is provided, rely on your general knowledge.
18
+ - Always be honest, polite, and helpful.
 
 
19
  """
20
 
21
+ RECENT_KEYWORDS = {
22
+ "latest", "today", "current", "now", "recent", "news", "update", "price",
23
+ "who won", "what happened", "trending", "breaking", "just in", "live",
24
+ "score", "results", "weather", "forecast", "report", "market", "stocks",
25
+ "crypto", "rate", "exchange", "gold price", "happening", "event", "updates",
26
+ "hot", "viral", "announcement", "today's", "this week", "schedule", "calendar",
27
+ "launch", "drop", "release date", "opening", "closing", "deadline",
28
+ }
29
+
30
+
31
+ def extract_text_from_pdf(pdf_file) -> str:
32
+ try:
33
+ with fitz.open(pdf_file.name) as doc:
34
+ return " ".join(page.get_text() for page in doc)
35
+ except Exception as e:
36
+ return f"Failed to read PDF: {e}"
37
+
38
+
39
+ def search_web(query: str) -> str:
40
+ try:
41
+ params = {
42
+ "q": query,
43
+ "api_key": os.getenv("SERPAPI_KEY", ""), # Keep it optional and env-based
44
+ "engine": "google",
45
+ }
46
+ if params["api_key"]:
47
+ results = GoogleSearch(params).get_dict()
48
+ if "organic_results" in results:
49
+ return "\n".join(
50
+ f"{r.get('title', '')}: {r.get('snippet', '')}"
51
+ for r in results["organic_results"][:3]
52
+ )
53
+ except Exception:
54
+ pass
55
+
56
+ try:
57
+ with DDGS() as ddgs:
58
+ results = ddgs.text(query)
59
+ if results:
60
+ return results[0]["body"]
61
+ except Exception:
62
+ pass
63
+
64
+ return "No relevant web results found."
65
+
66
 
67
  def respond(
68
+ message: str,
69
  history: list[tuple[str, str]],
70
+ pdf: object = None,
71
+ temperature: float = 0.4,
72
+ top_p: float = 0.1,
73
+ max_tokens: int = 2048,
74
  ):
75
+ context = ""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76
  message_lower = message.lower()
77
 
78
+ # 1. Use PDF content if available
79
+ if pdf is not None:
80
+ context = extract_text_from_pdf(pdf)
81
+ message += f"\n\n[Document context provided below for reference:]\n{context}"
82
 
83
+ # 2. Use web search if query looks recent
84
+ if any(keyword in message_lower for keyword in RECENT_KEYWORDS):
85
+ web_context = search_web(message)
 
 
 
 
 
86
  if web_context:
87
+ message += f"\n\n[Relevant web search results to help you answer]:\n{web_context}"
 
88
 
89
+ messages = [{"role": "system", "content": SYSTEM_PROMPT}]
90
+ for user, assistant in history:
91
+ messages.append({"role": "user", "content": user})
92
+ messages.append({"role": "assistant", "content": assistant})
93
  messages.append({"role": "user", "content": message})
94
 
95
+ # Stream LLM response
96
+ full_response = ""
97
+ for chunk in client.chat_completion(
98
  messages,
 
99
  stream=True,
100
  temperature=temperature,
101
  top_p=top_p,
102
+ max_tokens=max_tokens,
103
  ):
104
+ token = chunk.choices[0].delta.content or ""
105
+ full_response += token
106
+ yield full_response
107
 
 
 
108
 
109
+ with gr.Blocks() as demo:
110
+ gr.Markdown("## 💬 Smart Assistant with Web & Document Context")
111
 
112
+ with gr.Row():
113
+ pdf_input = gr.File(label="📄 Upload PDF (optional)", file_types=[".pdf"])
114
+ temperature = gr.Slider(0.0, 1.0, value=0.4, step=0.05, label="Temperature")
115
+ top_p = gr.Slider(0.1, 1.0, value=0.1, step=0.05, label="Top-p")
116
+
117
+ chat = gr.ChatInterface(
118
+ fn=respond,
119
+ additional_inputs=[pdf_input, temperature, top_p],
120
+ )
121
 
122
  if __name__ == "__main__":
123
  demo.launch()