File size: 11,668 Bytes
391b9f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c53aee
391b9f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import numpy as np
import pandas as pd
from tensorflow.keras.models import load_model
import joblib
from openai import OpenAI
from dotenv import load_dotenv
import os
import json
import gradio as gr
import logging

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

load_dotenv()
API = os.environ.get("OPENROUTER_API_KEY")
logger.info(f"API Key loaded: {bool(API)}")


# Baselines
BASELINE_LOWER = {
    'Household': 30,
    'Food': 40,
    'Shopping': 7,
    'Transportation': 5,
    'Health & Fitness': 5,
    'Entertainment': 5,
    'Beauty': 4,
    'Investment': 4,
}
BASELINE_UPPER = {
    'Household': 11,
    'Food': 10,
    'Shopping': 13,
    'Transportation': 11,
    'Health & Fitness': 10,
    'Entertainment': 18,
    'Beauty': 8,
    'Investment': 19,
}


# Load model and scaler
def load_financial_model(
    model_path='model/fuzz_dnn_full_model.keras',
    scaler_path='model/fuzzy_dnn_scaler.pkl',
):
    logger.info("Starting to load model and scaler")
    try:
        model = load_model(model_path)
        scaler = joblib.load(scaler_path)
        logger.info("Model and scaler loaded successfully")
        return model, scaler
    except Exception as e:
        print(f"Error loading model or scaler: {e}")
        logger.error(f"Error loading model or scaler: {e}")
        return None, None


# Prepare features
def prepare_features(df):
    df['spend_deviation_ratio'] = df['Percent_Spend'] / (df['Deviation'].abs() + 1)
    return df[['Percent_Spend', 'Deviation', 'spend_deviation_ratio']]


# Determine income level
def determine_income_level(total_spending):
    return 'upper' if total_spending >= 5000 else 'lower'


# Predict spending pattern
def predict_spending_pattern(model, scaler, input_data):
    total_spending = sum(input_data.values())
    income_level = determine_income_level(total_spending)
    baseline = BASELINE_UPPER if income_level == 'upper' else BASELINE_LOWER

    percent_spend = {k: (v / total_spending) * 100 for k, v in input_data.items()}
    rows = []
    for category, spend_percent in percent_spend.items():
        deviation = spend_percent - baseline.get(category, 0)
        rows.append(
            {
                'Category': category,
                'Percent_Spend': spend_percent,
                'Deviation': deviation,
            }
        )

    pred_df = pd.DataFrame(rows)
    X = prepare_features(pred_df)
    X_scaled = scaler.transform(X)
    predictions = model.predict(X_scaled, verbose=0)

    results = pd.DataFrame(
        {
            'Category': pred_df['Category'],
            'Percent_Spend': pred_df['Percent_Spend'],
            'Deviation': pred_df['Deviation'],
            'Raw_Score': predictions.flatten(),
            'Prediction': ['Good' if pred >= 0.6 else 'Bad' for pred in predictions],
        }
    )
    return (
        results.sort_values('Percent_Spend', ascending=False),
        total_spending,
        income_level,
    )


# Suggest spending pattern
def suggest_spending_pattern(results, total_spending, input_data, income_level):
    results = results.copy()
    suggested_spending = {}
    bad_categories = results[results['Prediction'] == 'Bad']
    good_categories = results[results['Prediction'] == 'Good']
    baseline = BASELINE_UPPER if income_level == 'upper' else BASELINE_LOWER

    if not bad_categories.empty:
        total_to_redistribute = sum(
            input_data[row['Category']]
            * min(max(abs(row['Deviation']) * 0.1, 0.25), 0.50)
            for _, row in bad_categories.iterrows()
            if row['Category'] not in ['Household', 'Food']
        )
        good_total = sum(input_data[cat] for cat in good_categories['Category'])
        distribution_weights = {
            cat: input_data[cat] / good_total if good_total > 0 else 0
            for cat in good_categories['Category']
        }

        for category in input_data:
            original = float(input_data[category])
            baseline_dollars = total_spending * (baseline[category] / 100)
            if category in bad_categories['Category'].values and category not in [
                'Household',
                'Food',
            ]:
                reduction = min(
                    max(
                        abs(
                            results[results['Category'] == category][
                                'Deviation'
                            ].values[0]
                        )
                        * 0.1,
                        0.25,
                    ),
                    0.50,
                )
                suggested = original * (1 - reduction)
            else:
                weight = distribution_weights.get(category, 0)
                increase = total_to_redistribute * weight
                suggested = max(
                    original + increase,
                    baseline_dollars if category in ['Household', 'Food'] else original,
                )
            suggested_spending[category] = (original, round(suggested, 2))
    else:
        suggested_spending = {
            cat: (float(val), float(val)) for cat, val in input_data.items()
        }
    return suggested_spending


# Format for Mistral
def format_for_mistral(
    results, suggested_spending, total_spending, income_level, input_data
):
    return {
        "total_spending": total_spending,
        "income_level": income_level,
        "categories": [
            {
                "category": row['Category'],
                "percent_spend": round(row['Percent_Spend'], 2),
                "actual_dollars": round(input_data[row['Category']], 2),
                "deviation": round(row['Deviation'], 2),
                "prediction": row['Prediction'],
                "suggested_dollars": suggested_spending[row['Category']][1],
            }
            for _, row in results.iterrows()
        ],
    }


# Get spending summary (Mistral API call)
def get_spending_summary(spending_data):
    client = OpenAI(base_url="https://openrouter.ai/api/v1", api_key=API)
    analysis_prompt = f"""
    You are a financial counselor analyzing a ${spending_data['total_spending']} monthly budget for a {spending_data['income_level']} income individual. Follow these strict rules:
    ### Financial Literacy Summary
    #### Praise
    For each 'Good' category:
    ⚠️ **Only show if ALL conditions met:**
    - `prediction` = 'Good'
    - `abs(deviation)` < 2%
    ✅ **{{category}} (${{actual_dollars}})** - 
    Explain using:
    1. "% vs baseline: {{percent_spend}}% ({{deviation:+.2f}}% vs {{baseline}}%)"
    2. Practical benefit
    3. Savings impact ONLY if `deviation` > 0
    #### Suggestions 
    ⚠️ **Only show if ALL conditions met:**
    - `prediction` = 'Bad'
    - `abs(deviation)` > 2%
    - `suggested_dollars` ≠ `actual_dollars`
    For each 'Bad' category: 
    ⚠️ **{{category}} (${{actual_dollars}} → ${{suggested_dollars}})** - 
    Structure as:
    1. If suggested INCREASE: "Prioritize {{category}} by adding ${{suggested_dollars - actual_dollars}}..."
    2. If suggested DECREASE: "Reduce {{category}} by ${{actual_dollars - suggested_dollars}}..."
    #### Key Principle
    Identify the MOST URGENT issue using largest absolute deviation...
    **Baseline Reference ({spending_data['income_level'].capitalize()} Income):**
    {'Food (10%), Household (11%), Shopping (13%), Transportation (11%), Health & Fitness (10%), Entertainment (18%), Beauty (8%), Investment (19%)' if spending_data['income_level'] == 'upper' else 'Food (40%), Household (30%), Shopping (7%), Transportation (5%), Health & Fitness (5%), Entertainment (5%), Beauty (4%), Investment (4%)'}
    **Data:**
    {json.dumps(spending_data, indent=2)}
    **Begin Analysis:**
    """
    try:
        response = client.chat.completions.create(
            model="mistralai/mistral-small-24b-instruct-2501:free",
            messages=[{"role": "user", "content": analysis_prompt}],
            temperature=0.5,
        )
        return response.choices[0].message.content
    except Exception as e:
        return f"Error calling Mistral API: {e}"


# Gradio interface function
def analyze_spending(
    household,
    food,
    shopping,
    transportation,
    health_fitness,
    entertainment,
    beauty,
    investment,
):
    input_data = {
        'Household': float(household),
        'Food': float(food),
        'Shopping': float(shopping),
        'Transportation': float(transportation),
        'Health & Fitness': float(health_fitness),
        'Entertainment': float(entertainment),
        'Beauty': float(beauty),
        'Investment': float(investment),
    }
    logger.info("Before loading model")
    model, scaler = load_financial_model()
    logger.info("After loading model")
    if model is None or scaler is None:
        return "Error: Model or scaler failed to load.", None, None, None

    results, total_spending, income_level = predict_spending_pattern(
        model, scaler, input_data
    )
    suggested_spending = suggest_spending_pattern(
        results, total_spending, input_data, income_level
    )
    spending_data = format_for_mistral(
        results, suggested_spending, total_spending, income_level, input_data
    )
    summary = get_spending_summary(spending_data)

    # Format suggested adjustments as a DataFrame
    suggested_df = pd.DataFrame(
        [(cat, orig, sugg) for cat, (orig, sugg) in suggested_spending.items()],
        columns=['Category', 'Original ($)', 'Suggested ($)'],
    )

    return (
        f"## Spending Analysis ({income_level.capitalize()} Income)\nTotal Spending: ${total_spending:.2f}",
        results,  # For DataFrame display
        suggested_df,  # For DataFrame display
        summary,  # Financial summary
    )


# Gradio UI
logger.info("Setting up Gradio interface")
with gr.Blocks(
    title="Personal Finance Assistant", css=".gr-button {margin-top: 10px}"
) as demo:
    gr.Markdown("# Personal Finance Assistant")
    gr.Markdown("Enter your monthly spending in each category ($):")
    with gr.Row():
        household = gr.Textbox(label="Household", value="500")
        food = gr.Textbox(label="Food", value="100")
        shopping = gr.Textbox(label="Shopping", value="950")
        transportation = gr.Textbox(label="Transportation", value="100")
    with gr.Row():
        health_fitness = gr.Textbox(label="Health & Fitness", value="200")
        entertainment = gr.Textbox(label="Entertainment", value="200")
        beauty = gr.Textbox(label="Beauty", value="100")
        investment = gr.Textbox(label="Investment", value="100")

    submit_btn = gr.Button("Analyze")

    # Output components
    with gr.Column():
        loading = gr.Markdown("### Analysis Results\n*Waiting for input...*")
        title = gr.Markdown()
        current_spending = gr.DataFrame(label="Current Spending")
        suggested_adjustments = gr.DataFrame(label="Suggested Adjustments")
        financial_summary = gr.Markdown()

    # Handle click with loading state
    def start_loading():
        return "### Analysis Results\n*Processing your spending data...*"

    submit_btn.click(fn=start_loading, inputs=None, outputs=loading).then(
        fn=analyze_spending,
        inputs=[
            household,
            food,
            shopping,
            transportation,
            health_fitness,
            entertainment,
            beauty,
            investment,
        ],
        outputs=[title, current_spending, suggested_adjustments, financial_summary],
        queue=True,
    )
logger.info("Launching Gradio server")
demo.launch(server_name="0.0.0.0", server_port=7860)