Spaces:
Running
Running
Aashu1308
commited on
Commit
·
391b9f9
1
Parent(s):
577d85e
Added app model requirements and dockerfile without .env
Browse files- .gitignore +1 -0
- Dockerfile +17 -0
- app.py +332 -0
- model/fuzz_dnn_full_model.keras +0 -0
- model/fuzzy_dnn_scaler.pkl +3 -0
- requirements.txt +7 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.env
|
Dockerfile
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM docker.io/tensorflow/tensorflow:2.18.0
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
RUN apt-get update && apt-get install -y python3-pip && rm -rf /var/lib/apt/lists/*
|
6 |
+
|
7 |
+
COPY requirements.txt .
|
8 |
+
|
9 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
10 |
+
|
11 |
+
COPY app_web.py .
|
12 |
+
|
13 |
+
COPY model/ ./model/
|
14 |
+
|
15 |
+
EXPOSE 7860
|
16 |
+
|
17 |
+
CMD ["python", "app_web.py"]
|
app.py
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
from tensorflow.keras.models import load_model
|
4 |
+
import joblib
|
5 |
+
from openai import OpenAI
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
import os
|
8 |
+
import json
|
9 |
+
import gradio as gr
|
10 |
+
import logging
|
11 |
+
|
12 |
+
logging.basicConfig(level=logging.INFO)
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
+
|
15 |
+
load_dotenv()
|
16 |
+
API = os.environ.get("OPENROUTER_API_KEY")
|
17 |
+
logger.info(f"API Key loaded: {bool(API_KEY)}")
|
18 |
+
|
19 |
+
|
20 |
+
# Baselines
|
21 |
+
BASELINE_LOWER = {
|
22 |
+
'Household': 30,
|
23 |
+
'Food': 40,
|
24 |
+
'Shopping': 7,
|
25 |
+
'Transportation': 5,
|
26 |
+
'Health & Fitness': 5,
|
27 |
+
'Entertainment': 5,
|
28 |
+
'Beauty': 4,
|
29 |
+
'Investment': 4,
|
30 |
+
}
|
31 |
+
BASELINE_UPPER = {
|
32 |
+
'Household': 11,
|
33 |
+
'Food': 10,
|
34 |
+
'Shopping': 13,
|
35 |
+
'Transportation': 11,
|
36 |
+
'Health & Fitness': 10,
|
37 |
+
'Entertainment': 18,
|
38 |
+
'Beauty': 8,
|
39 |
+
'Investment': 19,
|
40 |
+
}
|
41 |
+
|
42 |
+
|
43 |
+
# Load model and scaler
|
44 |
+
def load_financial_model(
|
45 |
+
model_path='model/fuzz_dnn_full_model.keras',
|
46 |
+
scaler_path='model/fuzzy_dnn_scaler.pkl',
|
47 |
+
):
|
48 |
+
logger.info("Starting to load model and scaler")
|
49 |
+
try:
|
50 |
+
model = load_model(model_path)
|
51 |
+
scaler = joblib.load(scaler_path)
|
52 |
+
logger.info("Model and scaler loaded successfully")
|
53 |
+
return model, scaler
|
54 |
+
except Exception as e:
|
55 |
+
print(f"Error loading model or scaler: {e}")
|
56 |
+
logger.error(f"Error loading model or scaler: {e}")
|
57 |
+
return None, None
|
58 |
+
|
59 |
+
|
60 |
+
# Prepare features
|
61 |
+
def prepare_features(df):
|
62 |
+
df['spend_deviation_ratio'] = df['Percent_Spend'] / (df['Deviation'].abs() + 1)
|
63 |
+
return df[['Percent_Spend', 'Deviation', 'spend_deviation_ratio']]
|
64 |
+
|
65 |
+
|
66 |
+
# Determine income level
|
67 |
+
def determine_income_level(total_spending):
|
68 |
+
return 'upper' if total_spending >= 5000 else 'lower'
|
69 |
+
|
70 |
+
|
71 |
+
# Predict spending pattern
|
72 |
+
def predict_spending_pattern(model, scaler, input_data):
|
73 |
+
total_spending = sum(input_data.values())
|
74 |
+
income_level = determine_income_level(total_spending)
|
75 |
+
baseline = BASELINE_UPPER if income_level == 'upper' else BASELINE_LOWER
|
76 |
+
|
77 |
+
percent_spend = {k: (v / total_spending) * 100 for k, v in input_data.items()}
|
78 |
+
rows = []
|
79 |
+
for category, spend_percent in percent_spend.items():
|
80 |
+
deviation = spend_percent - baseline.get(category, 0)
|
81 |
+
rows.append(
|
82 |
+
{
|
83 |
+
'Category': category,
|
84 |
+
'Percent_Spend': spend_percent,
|
85 |
+
'Deviation': deviation,
|
86 |
+
}
|
87 |
+
)
|
88 |
+
|
89 |
+
pred_df = pd.DataFrame(rows)
|
90 |
+
X = prepare_features(pred_df)
|
91 |
+
X_scaled = scaler.transform(X)
|
92 |
+
predictions = model.predict(X_scaled, verbose=0)
|
93 |
+
|
94 |
+
results = pd.DataFrame(
|
95 |
+
{
|
96 |
+
'Category': pred_df['Category'],
|
97 |
+
'Percent_Spend': pred_df['Percent_Spend'],
|
98 |
+
'Deviation': pred_df['Deviation'],
|
99 |
+
'Raw_Score': predictions.flatten(),
|
100 |
+
'Prediction': ['Good' if pred >= 0.6 else 'Bad' for pred in predictions],
|
101 |
+
}
|
102 |
+
)
|
103 |
+
return (
|
104 |
+
results.sort_values('Percent_Spend', ascending=False),
|
105 |
+
total_spending,
|
106 |
+
income_level,
|
107 |
+
)
|
108 |
+
|
109 |
+
|
110 |
+
# Suggest spending pattern
|
111 |
+
def suggest_spending_pattern(results, total_spending, input_data, income_level):
|
112 |
+
results = results.copy()
|
113 |
+
suggested_spending = {}
|
114 |
+
bad_categories = results[results['Prediction'] == 'Bad']
|
115 |
+
good_categories = results[results['Prediction'] == 'Good']
|
116 |
+
baseline = BASELINE_UPPER if income_level == 'upper' else BASELINE_LOWER
|
117 |
+
|
118 |
+
if not bad_categories.empty:
|
119 |
+
total_to_redistribute = sum(
|
120 |
+
input_data[row['Category']]
|
121 |
+
* min(max(abs(row['Deviation']) * 0.1, 0.25), 0.50)
|
122 |
+
for _, row in bad_categories.iterrows()
|
123 |
+
if row['Category'] not in ['Household', 'Food']
|
124 |
+
)
|
125 |
+
good_total = sum(input_data[cat] for cat in good_categories['Category'])
|
126 |
+
distribution_weights = {
|
127 |
+
cat: input_data[cat] / good_total if good_total > 0 else 0
|
128 |
+
for cat in good_categories['Category']
|
129 |
+
}
|
130 |
+
|
131 |
+
for category in input_data:
|
132 |
+
original = float(input_data[category])
|
133 |
+
baseline_dollars = total_spending * (baseline[category] / 100)
|
134 |
+
if category in bad_categories['Category'].values and category not in [
|
135 |
+
'Household',
|
136 |
+
'Food',
|
137 |
+
]:
|
138 |
+
reduction = min(
|
139 |
+
max(
|
140 |
+
abs(
|
141 |
+
results[results['Category'] == category][
|
142 |
+
'Deviation'
|
143 |
+
].values[0]
|
144 |
+
)
|
145 |
+
* 0.1,
|
146 |
+
0.25,
|
147 |
+
),
|
148 |
+
0.50,
|
149 |
+
)
|
150 |
+
suggested = original * (1 - reduction)
|
151 |
+
else:
|
152 |
+
weight = distribution_weights.get(category, 0)
|
153 |
+
increase = total_to_redistribute * weight
|
154 |
+
suggested = max(
|
155 |
+
original + increase,
|
156 |
+
baseline_dollars if category in ['Household', 'Food'] else original,
|
157 |
+
)
|
158 |
+
suggested_spending[category] = (original, round(suggested, 2))
|
159 |
+
else:
|
160 |
+
suggested_spending = {
|
161 |
+
cat: (float(val), float(val)) for cat, val in input_data.items()
|
162 |
+
}
|
163 |
+
return suggested_spending
|
164 |
+
|
165 |
+
|
166 |
+
# Format for Mistral
|
167 |
+
def format_for_mistral(
|
168 |
+
results, suggested_spending, total_spending, income_level, input_data
|
169 |
+
):
|
170 |
+
return {
|
171 |
+
"total_spending": total_spending,
|
172 |
+
"income_level": income_level,
|
173 |
+
"categories": [
|
174 |
+
{
|
175 |
+
"category": row['Category'],
|
176 |
+
"percent_spend": round(row['Percent_Spend'], 2),
|
177 |
+
"actual_dollars": round(input_data[row['Category']], 2),
|
178 |
+
"deviation": round(row['Deviation'], 2),
|
179 |
+
"prediction": row['Prediction'],
|
180 |
+
"suggested_dollars": suggested_spending[row['Category']][1],
|
181 |
+
}
|
182 |
+
for _, row in results.iterrows()
|
183 |
+
],
|
184 |
+
}
|
185 |
+
|
186 |
+
|
187 |
+
# Get spending summary (Mistral API call)
|
188 |
+
def get_spending_summary(spending_data):
|
189 |
+
client = OpenAI(base_url="https://openrouter.ai/api/v1", api_key=API)
|
190 |
+
analysis_prompt = f"""
|
191 |
+
You are a financial counselor analyzing a ${spending_data['total_spending']} monthly budget for a {spending_data['income_level']} income individual. Follow these strict rules:
|
192 |
+
### Financial Literacy Summary
|
193 |
+
#### Praise
|
194 |
+
For each 'Good' category:
|
195 |
+
⚠️ **Only show if ALL conditions met:**
|
196 |
+
- `prediction` = 'Good'
|
197 |
+
- `abs(deviation)` < 2%
|
198 |
+
✅ **{{category}} (${{actual_dollars}})** -
|
199 |
+
Explain using:
|
200 |
+
1. "% vs baseline: {{percent_spend}}% ({{deviation:+.2f}}% vs {{baseline}}%)"
|
201 |
+
2. Practical benefit
|
202 |
+
3. Savings impact ONLY if `deviation` > 0
|
203 |
+
#### Suggestions
|
204 |
+
⚠️ **Only show if ALL conditions met:**
|
205 |
+
- `prediction` = 'Bad'
|
206 |
+
- `abs(deviation)` > 2%
|
207 |
+
- `suggested_dollars` ≠ `actual_dollars`
|
208 |
+
For each 'Bad' category:
|
209 |
+
⚠️ **{{category}} (${{actual_dollars}} → ${{suggested_dollars}})** -
|
210 |
+
Structure as:
|
211 |
+
1. If suggested INCREASE: "Prioritize {{category}} by adding ${{suggested_dollars - actual_dollars}}..."
|
212 |
+
2. If suggested DECREASE: "Reduce {{category}} by ${{actual_dollars - suggested_dollars}}..."
|
213 |
+
#### Key Principle
|
214 |
+
Identify the MOST URGENT issue using largest absolute deviation...
|
215 |
+
**Baseline Reference ({spending_data['income_level'].capitalize()} Income):**
|
216 |
+
{'Food (10%), Household (11%), Shopping (13%), Transportation (11%), Health & Fitness (10%), Entertainment (18%), Beauty (8%), Investment (19%)' if spending_data['income_level'] == 'upper' else 'Food (40%), Household (30%), Shopping (7%), Transportation (5%), Health & Fitness (5%), Entertainment (5%), Beauty (4%), Investment (4%)'}
|
217 |
+
**Data:**
|
218 |
+
{json.dumps(spending_data, indent=2)}
|
219 |
+
**Begin Analysis:**
|
220 |
+
"""
|
221 |
+
try:
|
222 |
+
response = client.chat.completions.create(
|
223 |
+
model="mistralai/mistral-small-24b-instruct-2501:free",
|
224 |
+
messages=[{"role": "user", "content": analysis_prompt}],
|
225 |
+
temperature=0.5,
|
226 |
+
)
|
227 |
+
return response.choices[0].message.content
|
228 |
+
except Exception as e:
|
229 |
+
return f"Error calling Mistral API: {e}"
|
230 |
+
|
231 |
+
|
232 |
+
# Gradio interface function
|
233 |
+
def analyze_spending(
|
234 |
+
household,
|
235 |
+
food,
|
236 |
+
shopping,
|
237 |
+
transportation,
|
238 |
+
health_fitness,
|
239 |
+
entertainment,
|
240 |
+
beauty,
|
241 |
+
investment,
|
242 |
+
):
|
243 |
+
input_data = {
|
244 |
+
'Household': float(household),
|
245 |
+
'Food': float(food),
|
246 |
+
'Shopping': float(shopping),
|
247 |
+
'Transportation': float(transportation),
|
248 |
+
'Health & Fitness': float(health_fitness),
|
249 |
+
'Entertainment': float(entertainment),
|
250 |
+
'Beauty': float(beauty),
|
251 |
+
'Investment': float(investment),
|
252 |
+
}
|
253 |
+
logger.info("Before loading model")
|
254 |
+
model, scaler = load_financial_model()
|
255 |
+
logger.info("After loading model")
|
256 |
+
if model is None or scaler is None:
|
257 |
+
return "Error: Model or scaler failed to load.", None, None, None
|
258 |
+
|
259 |
+
results, total_spending, income_level = predict_spending_pattern(
|
260 |
+
model, scaler, input_data
|
261 |
+
)
|
262 |
+
suggested_spending = suggest_spending_pattern(
|
263 |
+
results, total_spending, input_data, income_level
|
264 |
+
)
|
265 |
+
spending_data = format_for_mistral(
|
266 |
+
results, suggested_spending, total_spending, income_level, input_data
|
267 |
+
)
|
268 |
+
summary = get_spending_summary(spending_data)
|
269 |
+
|
270 |
+
# Format suggested adjustments as a DataFrame
|
271 |
+
suggested_df = pd.DataFrame(
|
272 |
+
[(cat, orig, sugg) for cat, (orig, sugg) in suggested_spending.items()],
|
273 |
+
columns=['Category', 'Original ($)', 'Suggested ($)'],
|
274 |
+
)
|
275 |
+
|
276 |
+
return (
|
277 |
+
f"## Spending Analysis ({income_level.capitalize()} Income)\nTotal Spending: ${total_spending:.2f}",
|
278 |
+
results, # For DataFrame display
|
279 |
+
suggested_df, # For DataFrame display
|
280 |
+
summary, # Financial summary
|
281 |
+
)
|
282 |
+
|
283 |
+
|
284 |
+
# Gradio UI
|
285 |
+
logger.info("Setting up Gradio interface")
|
286 |
+
with gr.Blocks(
|
287 |
+
title="Personal Finance Assistant", css=".gr-button {margin-top: 10px}"
|
288 |
+
) as demo:
|
289 |
+
gr.Markdown("# Personal Finance Assistant")
|
290 |
+
gr.Markdown("Enter your monthly spending in each category ($):")
|
291 |
+
with gr.Row():
|
292 |
+
household = gr.Textbox(label="Household", value="500")
|
293 |
+
food = gr.Textbox(label="Food", value="100")
|
294 |
+
shopping = gr.Textbox(label="Shopping", value="950")
|
295 |
+
transportation = gr.Textbox(label="Transportation", value="100")
|
296 |
+
with gr.Row():
|
297 |
+
health_fitness = gr.Textbox(label="Health & Fitness", value="200")
|
298 |
+
entertainment = gr.Textbox(label="Entertainment", value="200")
|
299 |
+
beauty = gr.Textbox(label="Beauty", value="100")
|
300 |
+
investment = gr.Textbox(label="Investment", value="100")
|
301 |
+
|
302 |
+
submit_btn = gr.Button("Analyze")
|
303 |
+
|
304 |
+
# Output components
|
305 |
+
with gr.Column():
|
306 |
+
loading = gr.Markdown("### Analysis Results\n*Waiting for input...*")
|
307 |
+
title = gr.Markdown()
|
308 |
+
current_spending = gr.DataFrame(label="Current Spending")
|
309 |
+
suggested_adjustments = gr.DataFrame(label="Suggested Adjustments")
|
310 |
+
financial_summary = gr.Markdown()
|
311 |
+
|
312 |
+
# Handle click with loading state
|
313 |
+
def start_loading():
|
314 |
+
return "### Analysis Results\n*Processing your spending data...*"
|
315 |
+
|
316 |
+
submit_btn.click(fn=start_loading, inputs=None, outputs=loading).then(
|
317 |
+
fn=analyze_spending,
|
318 |
+
inputs=[
|
319 |
+
household,
|
320 |
+
food,
|
321 |
+
shopping,
|
322 |
+
transportation,
|
323 |
+
health_fitness,
|
324 |
+
entertainment,
|
325 |
+
beauty,
|
326 |
+
investment,
|
327 |
+
],
|
328 |
+
outputs=[title, current_spending, suggested_adjustments, financial_summary],
|
329 |
+
queue=True,
|
330 |
+
)
|
331 |
+
logger.info("Launching Gradio server")
|
332 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
model/fuzz_dnn_full_model.keras
ADDED
Binary file (192 kB). View file
|
|
model/fuzzy_dnn_scaler.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9561bf7e8c89b9a9d36ff8cd06d9537808d297d6f93a334a628bfe542d51a0a1
|
3 |
+
size 1039
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
pandas
|
3 |
+
joblib
|
4 |
+
openai
|
5 |
+
python-dotenv
|
6 |
+
gradio
|
7 |
+
scikit-learn
|