Files changed (1) hide show
  1. app.py +17 -2
app.py CHANGED
@@ -3,9 +3,19 @@ import pandas as pd
3
  import re
4
  import io
5
  from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
6
-
 
 
 
7
 
 
 
 
 
8
 
 
 
 
9
 
10
  # Load fine-tuned model and tokenizer
11
  model_name = "TAgroup5/news-classification-model"
@@ -68,4 +78,9 @@ context = st.text_area("Provide the news article or content for the Q&A:", heigh
68
 
69
  if question and context.strip():
70
  result = qa_pipeline(question=question, context=context)
71
- st.write("Answer:", result['answer'])
 
 
 
 
 
 
3
  import re
4
  import io
5
  from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
6
+ import nltk
7
+ from nltk.tokenize import word_tokenize
8
+ from nltk.corpus import stopwords
9
+ from nltk.stem import WordNetLemmatizer
10
 
11
+ # Download NLTK resources
12
+ nltk.download('punkt')
13
+ nltk.download('stopwords')
14
+ nltk.download('wordnet')
15
 
16
+ # Initialize lemmatizer and stopwords
17
+ lemmatizer = WordNetLemmatizer()
18
+ stop_words = set(stopwords.words('english'))
19
 
20
  # Load fine-tuned model and tokenizer
21
  model_name = "TAgroup5/news-classification-model"
 
78
 
79
  if question and context.strip():
80
  result = qa_pipeline(question=question, context=context)
81
+
82
+ # Check if the result contains an answer
83
+ if 'answer' in result and result['answer']:
84
+ st.write("Answer:", result['answer'])
85
+ else:
86
+ st.write("No answer found in the provided content.")