SyedHutter's picture
app.py Besh 2 (Push 8)
0281aec verified
raw
history blame
7.41 kB
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Dict, Any
from pymongo import MongoClient
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
import spacy
import os
import logging
import re
# Set up logging with detailed output
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
app = FastAPI()
# MongoDB Setup
connection_string = os.getenv("MONGO_URI", "mongodb+srv://clician:[email protected]/?retryWrites=true&w=majority&appName=Hutterdev")
client = MongoClient(connection_string)
db = client["test"]
products_collection = db["products"]
# BlenderBot Setup
model_repo = "SyedHutter/blenderbot_model"
model_subfolder = "blenderbot_model"
model_dir = "/home/user/app/blenderbot_model"
if not os.path.exists(model_dir):
logger.info(f"Downloading {model_repo}/{model_subfolder} to {model_dir}...")
tokenizer = BlenderbotTokenizer.from_pretrained(model_repo, subfolder=model_subfolder)
model = BlenderbotForConditionalGeneration.from_pretrained(model_repo, subfolder=model_subfolder)
os.makedirs(model_dir, exist_ok=True)
tokenizer.save_pretrained(model_dir)
model.save_pretrained(model_dir)
logger.info("Model download complete.")
else:
logger.info(f"Loading pre-existing model from {model_dir}.")
tokenizer = BlenderbotTokenizer.from_pretrained(model_dir)
model = BlenderbotForConditionalGeneration.from_pretrained(model_dir)
# No Static Context
context_msg = ""
# spaCy Setup
spacy_model_path = "/home/user/app/en_core_web_sm-3.8.0"
nlp = spacy.load(spacy_model_path)
# Pydantic Models
class PromptRequest(BaseModel):
input_text: str
conversation_history: List[str] = []
class CombinedResponse(BaseModel):
ner: Dict[str, Any]
qa: Dict[str, Any]
products_matched: List[Dict[str, Any]]
# Helper Functions
def extract_keywords(text: str) -> List[str]:
doc = nlp(text)
keywords = [token.text for token in doc if token.pos_ in ["NOUN", "PROPN"]]
return list(set(keywords))
def detect_intent(text: str) -> str:
doc = nlp(text.lower())
text_lower = text.lower()
if "shirt" in [token.text for token in doc]:
return "recommend_shirt"
elif "short" in [token.text for token in doc]:
return "recommend_shorts"
elif any(token.text in ["what", "who", "company", "do", "products"] for token in doc):
return "company_info"
elif "name" in text_lower:
return "ask_name"
elif re.search(r"\d+\s*[\+\-\*/]\s*\d+", text_lower):
return "math_query"
return "unknown"
def search_products_by_keywords(keywords: List[str]) -> List[Dict[str, Any]]:
if not keywords:
logger.info("No keywords provided, returning empty product list.")
return []
query = {"$or": [{"name": {"$regex": f"\\b{keyword}\\b", "$options": "i"}} for keyword in keywords]}
matched_products = [
{
"id": str(p["_id"]),
"name": p.get("name", "Unknown"),
"skuNumber": p.get("skuNumber", "N/A"),
"description": p.get("description", "No description available")
}
for p in products_collection.find(query)
]
return matched_products
def get_product_context(products: List[Dict]) -> str:
if not products:
return ""
product_str = "Here are some products: "
product_str += ", ".join([f"'{p['name']}' - {p['description']}" for p in products[:2]])
return product_str
def format_response(response: str, products: List[Dict], intent: str, input_text: str) -> str:
if intent == "recommend_shirt" or intent == "recommend_shorts":
if products:
product = products[0]
return f"{response} For example, check out our '{product['name']}'—it’s {product['description'].lower()}!"
return response
elif intent == "company_info":
return f"{response} At Hutter Products GmbH, we specialize in sustainable product design and production!"
elif intent == "ask_name":
return "I’m Grok, your friendly assistant from Hutter Products GmbH. How can I help you today?"
elif intent == "math_query":
match = re.search(r"(\d+)\s*([\+\-\*/])\s*(\d+)", input_text.lower())
if match:
num1, op, num2 = int(match.group(1)), match.group(2), int(match.group(3))
if op == "+":
return f"{num1} plus {num2} is {num1 + num2}!"
elif op == "-":
return f"{num1} minus {num2} is {num1 - num2}!"
elif op == "*":
return f"{num1} times {num2} is {num1 * num2}!"
elif op == "/":
return f"{num1} divided by {num2} is {num1 / num2}!" if num2 != 0 else "Can’t divide by zero!"
return "I can do simple math! Try something like '1 + 1'."
elif intent == "unknown":
return response # Let BlenderBot respond freely for unknown intent
return response
# Endpoints
@app.get("/")
async def root():
return {"message": "Welcome to the NER and Chat API!"}
@app.post("/process/", response_model=CombinedResponse)
async def process_prompt(request: PromptRequest):
try:
logger.info(f"Processing request: {request.input_text}")
input_text = request.input_text
history = request.conversation_history[-3:] if request.conversation_history else []
intent = detect_intent(input_text)
keywords = extract_keywords(input_text)
logger.info(f"Intent: {intent}, Keywords: {keywords}")
products = search_products_by_keywords(keywords)
product_context = get_product_context(products)
logger.info(f"Products matched: {len(products)}")
history_str = " || ".join(history)
full_input = f"{history_str} || {product_context} || {input_text}" if (history or product_context) else input_text
logger.info(f"Full input to model: {full_input}")
logger.info("Tokenizing input...")
inputs = tokenizer(full_input, return_tensors="pt", truncation=True, max_length=512)
logger.info("Input tokenized successfully.")
logger.info("Generating model response...")
outputs = model.generate(**inputs, max_length=50, num_beams=1, no_repeat_ngram_size=2)
logger.info("Model generation complete.")
logger.info("Decoding model output...")
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
logger.info(f"Model response: {response}")
enhanced_response = format_response(response, products, intent, input_text)
qa_response = {
"question": input_text,
"answer": enhanced_response,
"score": 1.0
}
logger.info("Returning response...")
return {
"ner": {"extracted_keywords": keywords},
"qa": qa_response,
"products_matched": products
}
except Exception as e:
logger.error(f"Error processing request: {str(e)}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Oops, something went wrong: {str(e)}. Try again!")
@app.on_event("startup")
async def startup_event():
logger.info("API is running with BlenderBot-400M-distill, connected to MongoDB.")
@app.on_event("shutdown")
def shutdown_event():
client.close()