Spaces:
Sleeping
Sleeping
File size: 7,412 Bytes
32d7156 0281aec 32d7156 36c9568 32d7156 36c9568 32d7156 9246354 32d7156 0281aec 32d7156 6dc2e31 32d7156 0281aec 32d7156 0281aec 32d7156 0281aec 32d7156 37df822 275cd2b 6a04711 8e7aaf2 32d7156 6a04711 32d7156 0281aec 32d7156 0281aec 32d7156 36c9568 32d7156 36c9568 32d7156 36c9568 32d7156 0281aec 36c9568 37df822 32d7156 37df822 32d7156 36c9568 32d7156 0281aec 32d7156 37df822 32d7156 275cd2b 32d7156 36c9568 32d7156 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Dict, Any
from pymongo import MongoClient
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
import spacy
import os
import logging
import re
# Set up logging with detailed output
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
app = FastAPI()
# MongoDB Setup
connection_string = os.getenv("MONGO_URI", "mongodb+srv://clician:[email protected]/?retryWrites=true&w=majority&appName=Hutterdev")
client = MongoClient(connection_string)
db = client["test"]
products_collection = db["products"]
# BlenderBot Setup
model_repo = "SyedHutter/blenderbot_model"
model_subfolder = "blenderbot_model"
model_dir = "/home/user/app/blenderbot_model"
if not os.path.exists(model_dir):
logger.info(f"Downloading {model_repo}/{model_subfolder} to {model_dir}...")
tokenizer = BlenderbotTokenizer.from_pretrained(model_repo, subfolder=model_subfolder)
model = BlenderbotForConditionalGeneration.from_pretrained(model_repo, subfolder=model_subfolder)
os.makedirs(model_dir, exist_ok=True)
tokenizer.save_pretrained(model_dir)
model.save_pretrained(model_dir)
logger.info("Model download complete.")
else:
logger.info(f"Loading pre-existing model from {model_dir}.")
tokenizer = BlenderbotTokenizer.from_pretrained(model_dir)
model = BlenderbotForConditionalGeneration.from_pretrained(model_dir)
# No Static Context
context_msg = ""
# spaCy Setup
spacy_model_path = "/home/user/app/en_core_web_sm-3.8.0"
nlp = spacy.load(spacy_model_path)
# Pydantic Models
class PromptRequest(BaseModel):
input_text: str
conversation_history: List[str] = []
class CombinedResponse(BaseModel):
ner: Dict[str, Any]
qa: Dict[str, Any]
products_matched: List[Dict[str, Any]]
# Helper Functions
def extract_keywords(text: str) -> List[str]:
doc = nlp(text)
keywords = [token.text for token in doc if token.pos_ in ["NOUN", "PROPN"]]
return list(set(keywords))
def detect_intent(text: str) -> str:
doc = nlp(text.lower())
text_lower = text.lower()
if "shirt" in [token.text for token in doc]:
return "recommend_shirt"
elif "short" in [token.text for token in doc]:
return "recommend_shorts"
elif any(token.text in ["what", "who", "company", "do", "products"] for token in doc):
return "company_info"
elif "name" in text_lower:
return "ask_name"
elif re.search(r"\d+\s*[\+\-\*/]\s*\d+", text_lower):
return "math_query"
return "unknown"
def search_products_by_keywords(keywords: List[str]) -> List[Dict[str, Any]]:
if not keywords:
logger.info("No keywords provided, returning empty product list.")
return []
query = {"$or": [{"name": {"$regex": f"\\b{keyword}\\b", "$options": "i"}} for keyword in keywords]}
matched_products = [
{
"id": str(p["_id"]),
"name": p.get("name", "Unknown"),
"skuNumber": p.get("skuNumber", "N/A"),
"description": p.get("description", "No description available")
}
for p in products_collection.find(query)
]
return matched_products
def get_product_context(products: List[Dict]) -> str:
if not products:
return ""
product_str = "Here are some products: "
product_str += ", ".join([f"'{p['name']}' - {p['description']}" for p in products[:2]])
return product_str
def format_response(response: str, products: List[Dict], intent: str, input_text: str) -> str:
if intent == "recommend_shirt" or intent == "recommend_shorts":
if products:
product = products[0]
return f"{response} For example, check out our '{product['name']}'—it’s {product['description'].lower()}!"
return response
elif intent == "company_info":
return f"{response} At Hutter Products GmbH, we specialize in sustainable product design and production!"
elif intent == "ask_name":
return "I’m Grok, your friendly assistant from Hutter Products GmbH. How can I help you today?"
elif intent == "math_query":
match = re.search(r"(\d+)\s*([\+\-\*/])\s*(\d+)", input_text.lower())
if match:
num1, op, num2 = int(match.group(1)), match.group(2), int(match.group(3))
if op == "+":
return f"{num1} plus {num2} is {num1 + num2}!"
elif op == "-":
return f"{num1} minus {num2} is {num1 - num2}!"
elif op == "*":
return f"{num1} times {num2} is {num1 * num2}!"
elif op == "/":
return f"{num1} divided by {num2} is {num1 / num2}!" if num2 != 0 else "Can’t divide by zero!"
return "I can do simple math! Try something like '1 + 1'."
elif intent == "unknown":
return response # Let BlenderBot respond freely for unknown intent
return response
# Endpoints
@app.get("/")
async def root():
return {"message": "Welcome to the NER and Chat API!"}
@app.post("/process/", response_model=CombinedResponse)
async def process_prompt(request: PromptRequest):
try:
logger.info(f"Processing request: {request.input_text}")
input_text = request.input_text
history = request.conversation_history[-3:] if request.conversation_history else []
intent = detect_intent(input_text)
keywords = extract_keywords(input_text)
logger.info(f"Intent: {intent}, Keywords: {keywords}")
products = search_products_by_keywords(keywords)
product_context = get_product_context(products)
logger.info(f"Products matched: {len(products)}")
history_str = " || ".join(history)
full_input = f"{history_str} || {product_context} || {input_text}" if (history or product_context) else input_text
logger.info(f"Full input to model: {full_input}")
logger.info("Tokenizing input...")
inputs = tokenizer(full_input, return_tensors="pt", truncation=True, max_length=512)
logger.info("Input tokenized successfully.")
logger.info("Generating model response...")
outputs = model.generate(**inputs, max_length=50, num_beams=1, no_repeat_ngram_size=2)
logger.info("Model generation complete.")
logger.info("Decoding model output...")
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
logger.info(f"Model response: {response}")
enhanced_response = format_response(response, products, intent, input_text)
qa_response = {
"question": input_text,
"answer": enhanced_response,
"score": 1.0
}
logger.info("Returning response...")
return {
"ner": {"extracted_keywords": keywords},
"qa": qa_response,
"products_matched": products
}
except Exception as e:
logger.error(f"Error processing request: {str(e)}", exc_info=True)
raise HTTPException(status_code=500, detail=f"Oops, something went wrong: {str(e)}. Try again!")
@app.on_event("startup")
async def startup_event():
logger.info("API is running with BlenderBot-400M-distill, connected to MongoDB.")
@app.on_event("shutdown")
def shutdown_event():
client.close() |