Spaces:
Runtime error
Runtime error
File size: 6,364 Bytes
3236d87 b7d5a98 3236d87 b7d5a98 3236d87 b7d5a98 3236d87 b7d5a98 3236d87 b7d5a98 3236d87 b7d5a98 3236d87 38bf459 3236d87 38bf459 3236d87 38bf459 3236d87 38bf459 3236d87 38bf459 3236d87 b7d5a98 3236d87 38bf459 3236d87 38bf459 3236d87 38bf459 3236d87 38bf459 3236d87 38bf459 3236d87 38bf459 3236d87 38bf459 3236d87 38bf459 3236d87 38bf459 3236d87 38bf459 3236d87 38bf459 3236d87 38bf459 3236d87 38bf459 3236d87 38bf459 3236d87 38bf459 3236d87 38bf459 3236d87 38bf459 3236d87 38bf459 3236d87 38bf459 3236d87 38bf459 3236d87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# import gradio as gr
# import torch
# from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
# from PIL import Image
# import numpy as np
# import cv2
# from rembg import remove
# # Загрузка моделей
# controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble")
# pipe = StableDiffusionControlNetPipeline.from_pretrained(
# "runwayml/stable-diffusion-v1-5",
# controlnet=controlnet,
# # torch_dtype=torch.float16
# ).to("cuda")
# def generate_background(image_path, prompt, negative_prompt):
# # Удаление фона
# image = Image.open(image_path).convert("RGBA")
# output_image = remove(image)
# # Преобразование изображения объекта в контурное изображение
# foreground = output_image.convert("L")
# _, contour = cv2.threshold(np.array(foreground), 127, 255, cv2.THRESH_BINARY)
# contour_image = Image.fromarray(contour)
# # Генерация фона
# generator = torch.Generator(device="cuda").manual_seed(1024)
# result = pipe(
# prompt=prompt,
# negative_prompt=negative_prompt,
# image=contour_image,
# generator=generator,
# num_inference_steps=50
# )
# background = result.images[0].convert("RGBA")
# # Изменение размера фона до размера переднего плана
# background = background.resize(output_image.size)
# # Наложение изображений
# composite = Image.alpha_composite(background, output_image)
# return composite
# # Определение интерфейса Gradio
# iface = gr.Interface(
# fn=generate_background,
# inputs=[
# gr.Image(type="filepath", label="Загрузите изображение"),
# gr.Textbox(lines=2, placeholder="Введите позитивный промт", label="Позитивный промт"),
# gr.Textbox(lines=2, placeholder="Введите негативный промт", label="Негативный промт")
# ],
# outputs=gr.Image(type="pil", label="Результат")
# )
# # Запуск интерфейса
# iface.launch()
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
else:
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt = prompt,
negative_prompt = negative_prompt,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
width = width,
height = height,
generator = generator
).images[0]
return image
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Text-to-Image Gradio Template
Currently running on {power_device}.
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=12,
step=1,
value=2,
)
gr.Examples(
examples = examples,
inputs = [prompt]
)
run_button.click(
fn = infer,
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs = [result]
)
demo.queue().launch() |