File size: 6,364 Bytes
3236d87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7d5a98
3236d87
 
 
 
b7d5a98
3236d87
 
 
 
 
 
 
 
 
b7d5a98
3236d87
b7d5a98
3236d87
 
b7d5a98
3236d87
 
b7d5a98
3236d87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38bf459
3236d87
 
 
 
 
38bf459
3236d87
38bf459
3236d87
 
 
 
 
 
 
 
38bf459
3236d87
 
38bf459
3236d87
b7d5a98
3236d87
 
38bf459
3236d87
38bf459
3236d87
 
 
 
 
 
 
 
 
38bf459
3236d87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38bf459
3236d87
 
 
 
 
38bf459
3236d87
38bf459
3236d87
 
 
 
 
 
 
38bf459
3236d87
38bf459
3236d87
38bf459
3236d87
38bf459
3236d87
 
 
 
 
 
38bf459
3236d87
 
 
 
 
 
 
38bf459
3236d87
38bf459
3236d87
38bf459
3236d87
 
 
 
 
 
 
38bf459
3236d87
 
 
 
 
 
 
38bf459
3236d87
38bf459
3236d87
 
 
 
 
 
 
38bf459
3236d87
 
 
 
 
 
 
38bf459
3236d87
 
 
 
 
 
 
 
 
 
38bf459
3236d87
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# import gradio as gr
# import torch
# from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
# from PIL import Image
# import numpy as np
# import cv2
# from rembg import remove

# # Загрузка моделей
# controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble")
# pipe = StableDiffusionControlNetPipeline.from_pretrained(
#     "runwayml/stable-diffusion-v1-5",
#     controlnet=controlnet,
#     # torch_dtype=torch.float16
# ).to("cuda")

# def generate_background(image_path, prompt, negative_prompt):
#     # Удаление фона
#     image = Image.open(image_path).convert("RGBA")
#     output_image = remove(image)
    
#     # Преобразование изображения объекта в контурное изображение
#     foreground = output_image.convert("L")
#     _, contour = cv2.threshold(np.array(foreground), 127, 255, cv2.THRESH_BINARY)
#     contour_image = Image.fromarray(contour)
    
#     # Генерация фона
#     generator = torch.Generator(device="cuda").manual_seed(1024)
#     result = pipe(
#         prompt=prompt,
#         negative_prompt=negative_prompt,
#         image=contour_image,
#         generator=generator,
#         num_inference_steps=50
#     )
    
#     background = result.images[0].convert("RGBA")
    
#     # Изменение размера фона до размера переднего плана
#     background = background.resize(output_image.size)
    
#     # Наложение изображений
#     composite = Image.alpha_composite(background, output_image)
    
#     return composite

# # Определение интерфейса Gradio
# iface = gr.Interface(
#     fn=generate_background,
#     inputs=[
#         gr.Image(type="filepath", label="Загрузите изображение"),
#         gr.Textbox(lines=2, placeholder="Введите позитивный промт", label="Позитивный промт"),
#         gr.Textbox(lines=2, placeholder="Введите негативный промт", label="Негативный промт")
#     ],
#     outputs=gr.Image(type="pil", label="Результат")
# )

# # Запуск интерфейса
# iface.launch()

import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"

if torch.cuda.is_available():
    torch.cuda.max_memory_allocated(device=device)
    pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
    pipe.enable_xformers_memory_efficient_attention()
    pipe = pipe.to(device)
else: 
    pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
    pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    generator = torch.Generator().manual_seed(seed)
    
    image = pipe(
        prompt = prompt, 
        negative_prompt = negative_prompt,
        guidance_scale = guidance_scale, 
        num_inference_steps = num_inference_steps, 
        width = width, 
        height = height,
        generator = generator
    ).images[0] 
    
    return image

examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

if torch.cuda.is_available():
    power_device = "GPU"
else:
    power_device = "CPU"

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""
        # Text-to-Image Gradio Template
        Currently running on {power_device}.
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
            
            with gr.Row():
                
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=0.0,
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=12,
                    step=1,
                    value=2,
                )
        
        gr.Examples(
            examples = examples,
            inputs = [prompt]
        )

    run_button.click(
        fn = infer,
        inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
        outputs = [result]
    )

demo.queue().launch()