Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,206 +1,206 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
4 |
-
from PIL import Image
|
5 |
-
import numpy as np
|
6 |
-
import cv2
|
7 |
-
from rembg import remove
|
8 |
-
|
9 |
-
# Загрузка моделей
|
10 |
-
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble")
|
11 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
).to("cuda")
|
16 |
-
|
17 |
-
def generate_background(image_path, prompt, negative_prompt):
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
|
37 |
-
|
38 |
|
39 |
-
|
40 |
-
|
41 |
|
42 |
-
|
43 |
-
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
# Определение интерфейса Gradio
|
48 |
-
iface = gr.Interface(
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
)
|
57 |
-
|
58 |
-
# Запуск интерфейса
|
59 |
-
iface.launch()
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
|
67 |
-
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
|
78 |
-
|
79 |
-
|
80 |
|
81 |
-
|
82 |
|
83 |
-
|
84 |
-
|
85 |
|
86 |
-
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
#
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
#
|
123 |
-
|
124 |
-
|
125 |
|
126 |
-
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
|
136 |
-
|
137 |
|
138 |
-
|
139 |
|
140 |
-
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
|
157 |
-
|
158 |
|
159 |
-
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
|
177 |
-
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
|
206 |
-
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# import torch
|
3 |
+
# from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
4 |
+
# from PIL import Image
|
5 |
+
# import numpy as np
|
6 |
+
# import cv2
|
7 |
+
# from rembg import remove
|
8 |
+
|
9 |
+
# # Загрузка моделей
|
10 |
+
# controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble")
|
11 |
+
# pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
12 |
+
# "runwayml/stable-diffusion-v1-5",
|
13 |
+
# controlnet=controlnet,
|
14 |
+
# # torch_dtype=torch.float16
|
15 |
+
# ).to("cuda")
|
16 |
+
|
17 |
+
# def generate_background(image_path, prompt, negative_prompt):
|
18 |
+
# # Удаление фона
|
19 |
+
# image = Image.open(image_path).convert("RGBA")
|
20 |
+
# output_image = remove(image)
|
21 |
|
22 |
+
# # Преобразование изображения объекта в контурное изображение
|
23 |
+
# foreground = output_image.convert("L")
|
24 |
+
# _, contour = cv2.threshold(np.array(foreground), 127, 255, cv2.THRESH_BINARY)
|
25 |
+
# contour_image = Image.fromarray(contour)
|
26 |
|
27 |
+
# # Генерация фона
|
28 |
+
# generator = torch.Generator(device="cuda").manual_seed(1024)
|
29 |
+
# result = pipe(
|
30 |
+
# prompt=prompt,
|
31 |
+
# negative_prompt=negative_prompt,
|
32 |
+
# image=contour_image,
|
33 |
+
# generator=generator,
|
34 |
+
# num_inference_steps=50
|
35 |
+
# )
|
36 |
|
37 |
+
# background = result.images[0].convert("RGBA")
|
38 |
|
39 |
+
# # Изменение размера фона до размера переднего плана
|
40 |
+
# background = background.resize(output_image.size)
|
41 |
|
42 |
+
# # Наложение изображений
|
43 |
+
# composite = Image.alpha_composite(background, output_image)
|
44 |
|
45 |
+
# return composite
|
46 |
+
|
47 |
+
# # Определение интерфейса Gradio
|
48 |
+
# iface = gr.Interface(
|
49 |
+
# fn=generate_background,
|
50 |
+
# inputs=[
|
51 |
+
# gr.Image(type="filepath", label="Загрузите изображение"),
|
52 |
+
# gr.Textbox(lines=2, placeholder="Введите позитивный промт", label="Позитивный промт"),
|
53 |
+
# gr.Textbox(lines=2, placeholder="Введите негативный промт", label="Негативный промт")
|
54 |
+
# ],
|
55 |
+
# outputs=gr.Image(type="pil", label="Результат")
|
56 |
+
# )
|
57 |
+
|
58 |
+
# # Запуск интерфейса
|
59 |
+
# iface.launch()
|
60 |
|
61 |
+
import gradio as gr
|
62 |
+
import numpy as np
|
63 |
+
import random
|
64 |
+
from diffusers import DiffusionPipeline
|
65 |
+
import torch
|
66 |
|
67 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
68 |
|
69 |
+
if torch.cuda.is_available():
|
70 |
+
torch.cuda.max_memory_allocated(device=device)
|
71 |
+
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
72 |
+
pipe.enable_xformers_memory_efficient_attention()
|
73 |
+
pipe = pipe.to(device)
|
74 |
+
else:
|
75 |
+
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
76 |
+
pipe = pipe.to(device)
|
77 |
|
78 |
+
MAX_SEED = np.iinfo(np.int32).max
|
79 |
+
MAX_IMAGE_SIZE = 1024
|
80 |
|
81 |
+
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
82 |
|
83 |
+
if randomize_seed:
|
84 |
+
seed = random.randint(0, MAX_SEED)
|
85 |
|
86 |
+
generator = torch.Generator().manual_seed(seed)
|
87 |
|
88 |
+
image = pipe(
|
89 |
+
prompt = prompt,
|
90 |
+
negative_prompt = negative_prompt,
|
91 |
+
guidance_scale = guidance_scale,
|
92 |
+
num_inference_steps = num_inference_steps,
|
93 |
+
width = width,
|
94 |
+
height = height,
|
95 |
+
generator = generator
|
96 |
+
).images[0]
|
97 |
|
98 |
+
return image
|
99 |
+
|
100 |
+
examples = [
|
101 |
+
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
102 |
+
"An astronaut riding a green horse",
|
103 |
+
"A delicious ceviche cheesecake slice",
|
104 |
+
]
|
105 |
+
|
106 |
+
css="""
|
107 |
+
#col-container {
|
108 |
+
margin: 0 auto;
|
109 |
+
max-width: 520px;
|
110 |
+
}
|
111 |
+
"""
|
112 |
+
|
113 |
+
if torch.cuda.is_available():
|
114 |
+
power_device = "GPU"
|
115 |
+
else:
|
116 |
+
power_device = "CPU"
|
117 |
+
|
118 |
+
with gr.Blocks(css=css) as demo:
|
119 |
|
120 |
+
with gr.Column(elem_id="col-container"):
|
121 |
+
gr.Markdown(f"""
|
122 |
+
# Text-to-Image Gradio Template
|
123 |
+
Currently running on {power_device}.
|
124 |
+
""")
|
125 |
|
126 |
+
with gr.Row():
|
127 |
|
128 |
+
prompt = gr.Text(
|
129 |
+
label="Prompt",
|
130 |
+
show_label=False,
|
131 |
+
max_lines=1,
|
132 |
+
placeholder="Enter your prompt",
|
133 |
+
container=False,
|
134 |
+
)
|
135 |
|
136 |
+
run_button = gr.Button("Run", scale=0)
|
137 |
|
138 |
+
result = gr.Image(label="Result", show_label=False)
|
139 |
|
140 |
+
with gr.Accordion("Advanced Settings", open=False):
|
141 |
|
142 |
+
negative_prompt = gr.Text(
|
143 |
+
label="Negative prompt",
|
144 |
+
max_lines=1,
|
145 |
+
placeholder="Enter a negative prompt",
|
146 |
+
visible=False,
|
147 |
+
)
|
148 |
|
149 |
+
seed = gr.Slider(
|
150 |
+
label="Seed",
|
151 |
+
minimum=0,
|
152 |
+
maximum=MAX_SEED,
|
153 |
+
step=1,
|
154 |
+
value=0,
|
155 |
+
)
|
156 |
|
157 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
158 |
|
159 |
+
with gr.Row():
|
160 |
|
161 |
+
width = gr.Slider(
|
162 |
+
label="Width",
|
163 |
+
minimum=256,
|
164 |
+
maximum=MAX_IMAGE_SIZE,
|
165 |
+
step=32,
|
166 |
+
value=512,
|
167 |
+
)
|
168 |
|
169 |
+
height = gr.Slider(
|
170 |
+
label="Height",
|
171 |
+
minimum=256,
|
172 |
+
maximum=MAX_IMAGE_SIZE,
|
173 |
+
step=32,
|
174 |
+
value=512,
|
175 |
+
)
|
176 |
|
177 |
+
with gr.Row():
|
178 |
|
179 |
+
guidance_scale = gr.Slider(
|
180 |
+
label="Guidance scale",
|
181 |
+
minimum=0.0,
|
182 |
+
maximum=10.0,
|
183 |
+
step=0.1,
|
184 |
+
value=0.0,
|
185 |
+
)
|
186 |
|
187 |
+
num_inference_steps = gr.Slider(
|
188 |
+
label="Number of inference steps",
|
189 |
+
minimum=1,
|
190 |
+
maximum=12,
|
191 |
+
step=1,
|
192 |
+
value=2,
|
193 |
+
)
|
194 |
|
195 |
+
gr.Examples(
|
196 |
+
examples = examples,
|
197 |
+
inputs = [prompt]
|
198 |
+
)
|
199 |
+
|
200 |
+
run_button.click(
|
201 |
+
fn = infer,
|
202 |
+
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
203 |
+
outputs = [result]
|
204 |
+
)
|
205 |
|
206 |
+
demo.queue().launch()
|