Sveta commited on
Commit
3236d87
·
verified ·
1 Parent(s): 3c67792

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +174 -174
app.py CHANGED
@@ -1,206 +1,206 @@
1
- import gradio as gr
2
- import torch
3
- from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
4
- from PIL import Image
5
- import numpy as np
6
- import cv2
7
- from rembg import remove
8
-
9
- # Загрузка моделей
10
- controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble")
11
- pipe = StableDiffusionControlNetPipeline.from_pretrained(
12
- "runwayml/stable-diffusion-v1-5",
13
- controlnet=controlnet,
14
- # torch_dtype=torch.float16
15
- ).to("cuda")
16
-
17
- def generate_background(image_path, prompt, negative_prompt):
18
- # Удаление фона
19
- image = Image.open(image_path).convert("RGBA")
20
- output_image = remove(image)
21
 
22
- # Преобразование изображения объекта в контурное изображение
23
- foreground = output_image.convert("L")
24
- _, contour = cv2.threshold(np.array(foreground), 127, 255, cv2.THRESH_BINARY)
25
- contour_image = Image.fromarray(contour)
26
 
27
- # Генерация фона
28
- generator = torch.Generator(device="cuda").manual_seed(1024)
29
- result = pipe(
30
- prompt=prompt,
31
- negative_prompt=negative_prompt,
32
- image=contour_image,
33
- generator=generator,
34
- num_inference_steps=50
35
- )
36
 
37
- background = result.images[0].convert("RGBA")
38
 
39
- # Изменение размера фона до размера переднего плана
40
- background = background.resize(output_image.size)
41
 
42
- # Наложение изображений
43
- composite = Image.alpha_composite(background, output_image)
44
 
45
- return composite
46
-
47
- # Определение интерфейса Gradio
48
- iface = gr.Interface(
49
- fn=generate_background,
50
- inputs=[
51
- gr.Image(type="filepath", label="Загрузите изображение"),
52
- gr.Textbox(lines=2, placeholder="Введите позитивный промт", label="Позитивный промт"),
53
- gr.Textbox(lines=2, placeholder="Введите негативный промт", label="Негативный промт")
54
- ],
55
- outputs=gr.Image(type="pil", label="Результат")
56
- )
57
-
58
- # Запуск интерфейса
59
- iface.launch()
60
 
61
- # import gradio as gr
62
- # import numpy as np
63
- # import random
64
- # from diffusers import DiffusionPipeline
65
- # import torch
66
 
67
- # device = "cuda" if torch.cuda.is_available() else "cpu"
68
 
69
- # if torch.cuda.is_available():
70
- # torch.cuda.max_memory_allocated(device=device)
71
- # pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
72
- # pipe.enable_xformers_memory_efficient_attention()
73
- # pipe = pipe.to(device)
74
- # else:
75
- # pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
76
- # pipe = pipe.to(device)
77
 
78
- # MAX_SEED = np.iinfo(np.int32).max
79
- # MAX_IMAGE_SIZE = 1024
80
 
81
- # def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
82
 
83
- # if randomize_seed:
84
- # seed = random.randint(0, MAX_SEED)
85
 
86
- # generator = torch.Generator().manual_seed(seed)
87
 
88
- # image = pipe(
89
- # prompt = prompt,
90
- # negative_prompt = negative_prompt,
91
- # guidance_scale = guidance_scale,
92
- # num_inference_steps = num_inference_steps,
93
- # width = width,
94
- # height = height,
95
- # generator = generator
96
- # ).images[0]
97
 
98
- # return image
99
-
100
- # examples = [
101
- # "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
102
- # "An astronaut riding a green horse",
103
- # "A delicious ceviche cheesecake slice",
104
- # ]
105
-
106
- # css="""
107
- # #col-container {
108
- # margin: 0 auto;
109
- # max-width: 520px;
110
- # }
111
- # """
112
-
113
- # if torch.cuda.is_available():
114
- # power_device = "GPU"
115
- # else:
116
- # power_device = "CPU"
117
-
118
- # with gr.Blocks(css=css) as demo:
119
 
120
- # with gr.Column(elem_id="col-container"):
121
- # gr.Markdown(f"""
122
- # # Text-to-Image Gradio Template
123
- # Currently running on {power_device}.
124
- # """)
125
 
126
- # with gr.Row():
127
 
128
- # prompt = gr.Text(
129
- # label="Prompt",
130
- # show_label=False,
131
- # max_lines=1,
132
- # placeholder="Enter your prompt",
133
- # container=False,
134
- # )
135
 
136
- # run_button = gr.Button("Run", scale=0)
137
 
138
- # result = gr.Image(label="Result", show_label=False)
139
 
140
- # with gr.Accordion("Advanced Settings", open=False):
141
 
142
- # negative_prompt = gr.Text(
143
- # label="Negative prompt",
144
- # max_lines=1,
145
- # placeholder="Enter a negative prompt",
146
- # visible=False,
147
- # )
148
 
149
- # seed = gr.Slider(
150
- # label="Seed",
151
- # minimum=0,
152
- # maximum=MAX_SEED,
153
- # step=1,
154
- # value=0,
155
- # )
156
 
157
- # randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
158
 
159
- # with gr.Row():
160
 
161
- # width = gr.Slider(
162
- # label="Width",
163
- # minimum=256,
164
- # maximum=MAX_IMAGE_SIZE,
165
- # step=32,
166
- # value=512,
167
- # )
168
 
169
- # height = gr.Slider(
170
- # label="Height",
171
- # minimum=256,
172
- # maximum=MAX_IMAGE_SIZE,
173
- # step=32,
174
- # value=512,
175
- # )
176
 
177
- # with gr.Row():
178
 
179
- # guidance_scale = gr.Slider(
180
- # label="Guidance scale",
181
- # minimum=0.0,
182
- # maximum=10.0,
183
- # step=0.1,
184
- # value=0.0,
185
- # )
186
 
187
- # num_inference_steps = gr.Slider(
188
- # label="Number of inference steps",
189
- # minimum=1,
190
- # maximum=12,
191
- # step=1,
192
- # value=2,
193
- # )
194
 
195
- # gr.Examples(
196
- # examples = examples,
197
- # inputs = [prompt]
198
- # )
199
-
200
- # run_button.click(
201
- # fn = infer,
202
- # inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
203
- # outputs = [result]
204
- # )
205
 
206
- # demo.queue().launch()
 
1
+ # import gradio as gr
2
+ # import torch
3
+ # from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
4
+ # from PIL import Image
5
+ # import numpy as np
6
+ # import cv2
7
+ # from rembg import remove
8
+
9
+ # # Загрузка моделей
10
+ # controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble")
11
+ # pipe = StableDiffusionControlNetPipeline.from_pretrained(
12
+ # "runwayml/stable-diffusion-v1-5",
13
+ # controlnet=controlnet,
14
+ # # torch_dtype=torch.float16
15
+ # ).to("cuda")
16
+
17
+ # def generate_background(image_path, prompt, negative_prompt):
18
+ # # Удаление фона
19
+ # image = Image.open(image_path).convert("RGBA")
20
+ # output_image = remove(image)
21
 
22
+ # # Преобразование изображения объекта в контурное изображение
23
+ # foreground = output_image.convert("L")
24
+ # _, contour = cv2.threshold(np.array(foreground), 127, 255, cv2.THRESH_BINARY)
25
+ # contour_image = Image.fromarray(contour)
26
 
27
+ # # Генерация фона
28
+ # generator = torch.Generator(device="cuda").manual_seed(1024)
29
+ # result = pipe(
30
+ # prompt=prompt,
31
+ # negative_prompt=negative_prompt,
32
+ # image=contour_image,
33
+ # generator=generator,
34
+ # num_inference_steps=50
35
+ # )
36
 
37
+ # background = result.images[0].convert("RGBA")
38
 
39
+ # # Изменение размера фона до размера переднего плана
40
+ # background = background.resize(output_image.size)
41
 
42
+ # # Наложение изображений
43
+ # composite = Image.alpha_composite(background, output_image)
44
 
45
+ # return composite
46
+
47
+ # # Определение интерфейса Gradio
48
+ # iface = gr.Interface(
49
+ # fn=generate_background,
50
+ # inputs=[
51
+ # gr.Image(type="filepath", label="Загрузите изображение"),
52
+ # gr.Textbox(lines=2, placeholder="Введите позитивный промт", label="Позитивный промт"),
53
+ # gr.Textbox(lines=2, placeholder="Введите негативный промт", label="Негативный промт")
54
+ # ],
55
+ # outputs=gr.Image(type="pil", label="Результат")
56
+ # )
57
+
58
+ # # Запуск интерфейса
59
+ # iface.launch()
60
 
61
+ import gradio as gr
62
+ import numpy as np
63
+ import random
64
+ from diffusers import DiffusionPipeline
65
+ import torch
66
 
67
+ device = "cuda" if torch.cuda.is_available() else "cpu"
68
 
69
+ if torch.cuda.is_available():
70
+ torch.cuda.max_memory_allocated(device=device)
71
+ pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
72
+ pipe.enable_xformers_memory_efficient_attention()
73
+ pipe = pipe.to(device)
74
+ else:
75
+ pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
76
+ pipe = pipe.to(device)
77
 
78
+ MAX_SEED = np.iinfo(np.int32).max
79
+ MAX_IMAGE_SIZE = 1024
80
 
81
+ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
82
 
83
+ if randomize_seed:
84
+ seed = random.randint(0, MAX_SEED)
85
 
86
+ generator = torch.Generator().manual_seed(seed)
87
 
88
+ image = pipe(
89
+ prompt = prompt,
90
+ negative_prompt = negative_prompt,
91
+ guidance_scale = guidance_scale,
92
+ num_inference_steps = num_inference_steps,
93
+ width = width,
94
+ height = height,
95
+ generator = generator
96
+ ).images[0]
97
 
98
+ return image
99
+
100
+ examples = [
101
+ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
102
+ "An astronaut riding a green horse",
103
+ "A delicious ceviche cheesecake slice",
104
+ ]
105
+
106
+ css="""
107
+ #col-container {
108
+ margin: 0 auto;
109
+ max-width: 520px;
110
+ }
111
+ """
112
+
113
+ if torch.cuda.is_available():
114
+ power_device = "GPU"
115
+ else:
116
+ power_device = "CPU"
117
+
118
+ with gr.Blocks(css=css) as demo:
119
 
120
+ with gr.Column(elem_id="col-container"):
121
+ gr.Markdown(f"""
122
+ # Text-to-Image Gradio Template
123
+ Currently running on {power_device}.
124
+ """)
125
 
126
+ with gr.Row():
127
 
128
+ prompt = gr.Text(
129
+ label="Prompt",
130
+ show_label=False,
131
+ max_lines=1,
132
+ placeholder="Enter your prompt",
133
+ container=False,
134
+ )
135
 
136
+ run_button = gr.Button("Run", scale=0)
137
 
138
+ result = gr.Image(label="Result", show_label=False)
139
 
140
+ with gr.Accordion("Advanced Settings", open=False):
141
 
142
+ negative_prompt = gr.Text(
143
+ label="Negative prompt",
144
+ max_lines=1,
145
+ placeholder="Enter a negative prompt",
146
+ visible=False,
147
+ )
148
 
149
+ seed = gr.Slider(
150
+ label="Seed",
151
+ minimum=0,
152
+ maximum=MAX_SEED,
153
+ step=1,
154
+ value=0,
155
+ )
156
 
157
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
158
 
159
+ with gr.Row():
160
 
161
+ width = gr.Slider(
162
+ label="Width",
163
+ minimum=256,
164
+ maximum=MAX_IMAGE_SIZE,
165
+ step=32,
166
+ value=512,
167
+ )
168
 
169
+ height = gr.Slider(
170
+ label="Height",
171
+ minimum=256,
172
+ maximum=MAX_IMAGE_SIZE,
173
+ step=32,
174
+ value=512,
175
+ )
176
 
177
+ with gr.Row():
178
 
179
+ guidance_scale = gr.Slider(
180
+ label="Guidance scale",
181
+ minimum=0.0,
182
+ maximum=10.0,
183
+ step=0.1,
184
+ value=0.0,
185
+ )
186
 
187
+ num_inference_steps = gr.Slider(
188
+ label="Number of inference steps",
189
+ minimum=1,
190
+ maximum=12,
191
+ step=1,
192
+ value=2,
193
+ )
194
 
195
+ gr.Examples(
196
+ examples = examples,
197
+ inputs = [prompt]
198
+ )
199
+
200
+ run_button.click(
201
+ fn = infer,
202
+ inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
203
+ outputs = [result]
204
+ )
205
 
206
+ demo.queue().launch()