demo_1 / app.py
Steph254's picture
Update app.py
61d529e verified
raw
history blame
8.06 kB
import os
import gradio as gr
import torch
import json
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
# Set Hugging Face Token for Authentication
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") # Ensure this is set in your environment
# Add this at the beginning of your script
token_value = os.getenv("HUGGINGFACE_TOKEN")
if token_value:
print("HUGGINGFACE_TOKEN is set")
# Print first few characters to verify it's not empty
print(f"Token starts with: {token_value[:5]}...")
else:
print("HUGGINGFACE_TOKEN is not set")
# Correct model paths (replace with your actual paths)
BASE_MODEL = "meta-llama/Llama-3.2-1B-Instruct" # Ensure this is the correct identifier
QLORA_ADAPTER = "meta-llama/Llama-3.2-1B-Instruct-QLORA_INT4_EO8" # Ensure this is correct
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4" # Ensure this is correct
# Function to load Llama model
def load_llama_model():
print(f"🔄 Loading Base Model: {BASE_MODEL}")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, use_auth_token=HUGGINGFACE_TOKEN)
model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
use_auth_token=HUGGINGFACE_TOKEN,
torch_dtype=torch.float16,
low_cpu_mem_usage=True
)
print(f"✅ Base Model Loaded Successfully")
# Load QLoRA adapter if available
print(f"🔄 Loading QLoRA Adapter: {QLORA_ADAPTER}")
model = PeftModel.from_pretrained(model, QLORA_ADAPTER, use_auth_token=HUGGINGFACE_TOKEN)
print("🔄 Merging LoRA Weights...")
model = model.merge_and_unload()
print("✅ QLoRA Adapter Loaded Successfully")
model.eval()
return tokenizer, model
# Function to load Llama Guard Model for content moderation
def load_llama_guard():
print(f"🔄 Loading Llama Guard Model: {LLAMA_GUARD_NAME}")
tokenizer = AutoTokenizer.from_pretrained(LLAMA_GUARD_NAME, use_auth_token=HUGGINGFACE_TOKEN)
model = AutoModelForCausalLM.from_pretrained(
LLAMA_GUARD_NAME,
use_auth_token=HUGGINGFACE_TOKEN,
torch_dtype=torch.float16,
low_cpu_mem_usage=True
)
model.eval()
print("✅ Llama Guard Model Loaded Successfully")
return tokenizer, model
except Exception as e:
print(f"❌ Error loading model {model_path}: {e}")
raise
# Load Llama 3.2 model
tokenizer, model = load_llama_model(QLORA_ADAPTER)
# Load Llama Guard for content moderation
guard_tokenizer, guard_model = load_llama_model(LLAMA_GUARD_NAME, is_guard=True)
# Define Prompt Templates (same as before)
PROMPTS = {
"project_analysis": """<|begin_of_text|><|prompt|>Analyze this project description and generate:
1. Project timeline with milestones
2. Required technology stack
3. Potential risks
4. Team composition
5. Cost estimation
Project: {project_description}<|completion|>""",
"code_generation": """<|begin_of_text|><|prompt|>Generate implementation code for this feature:
{feature_description}
Considerations:
- Use {programming_language}
- Follow {coding_standards}
- Include error handling
- Add documentation<|completion|>""",
"risk_analysis": """<|begin_of_text|><|prompt|>Predict potential risks for this project plan:
{project_data}
Format output as JSON with risk types, probabilities, and mitigation strategies<|completion|>"""
}
# Function: Content Moderation using Llama Guard (same as before)
def moderate_input(user_input):
prompt = f"""<|begin_of_text|><|user|>
Input: {user_input}
Please verify that this input doesn't violate any content policies.
<|assistant|>"""
inputs = guard_tokenizer(prompt, return_tensors="pt", truncation=True)
with torch.no_grad():
outputs = guard_model.generate(
inputs.input_ids,
max_length=256,
temperature=0.1
)
response = guard_tokenizer.decode(outputs[0], skip_special_tokens=True)
if "flagged" in response.lower() or "violated" in response.lower() or "policy violation" in response.lower():
return "⚠️ Content flagged by Llama Guard. Please modify your input."
return None
# Function: Generate AI responses (same as before)
def generate_response(prompt_type, **kwargs):
prompt = PROMPTS[prompt_type].format(**kwargs)
moderation_warning = moderate_input(prompt)
if moderation_warning:
return moderation_warning
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_length=1024,
temperature=0.7 if prompt_type == "project_analysis" else 0.5,
top_p=0.9,
do_sample=True
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Gradio UI (same as before)
def create_gradio_interface():
with gr.Blocks(title="AI Project Manager", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🚀 AI-Powered Project Manager & Code Assistant")
with gr.Tab("Project Setup"):
project_input = gr.Textbox(label="Project Description", lines=5, placeholder="Describe your project...")
project_output = gr.Textbox(label="Project Analysis", lines=15)
analyze_btn = gr.Button("Analyze Project")
analyze_btn.click(analyze_project, inputs=project_input, outputs=project_output)
with gr.Tab("Code Assistant"):
code_input = gr.Textbox(label="Feature Description", lines=3)
lang_select = gr.Dropdown(["Python", "JavaScript", "Java", "C++"], label="Language", value="Python")
standards_select = gr.Dropdown(["PEP8", "Google", "Airbnb"], label="Coding Standard", value="PEP8")
code_output = gr.Code(label="Generated Code")
code_btn = gr.Button("Generate Code")
code_btn.click(generate_code, inputs=[code_input, lang_select, standards_select], outputs=code_output)
with gr.Tab("Risk Analysis"):
risk_input = gr.Textbox(label="Project Plan", lines=5)
risk_output = gr.JSON(label="Risk Predictions")
risk_btn = gr.Button("Predict Risks")
risk_btn.click(predict_risks, inputs=risk_input, outputs=risk_output)
with gr.Tab("Live Collaboration"):
gr.Markdown("## Real-time Project Collaboration")
chat = gr.Chatbot(height=400)
msg = gr.Textbox(label="Chat with AI PM")
clear = gr.Button("Clear Chat")
def respond(message, chat_history):
moderation_warning = moderate_input(message)
if moderation_warning:
chat_history.append((message, moderation_warning))
return "", chat_history
history_text = ""
for i, (usr, ai) in enumerate(chat_history[-3:]):
history_text += f"User: {usr}\nAI: {ai}\n"
prompt = f"""<|begin_of_text|><|prompt|>Project Management Chat:
Context: {message}
Chat History: {history_text}
User: {message}<|completion|>"""
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_length=1024,
temperature=0.7,
top_p=0.9,
do_sample=True
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
chat_history.append((message, response))
return "", chat_history
msg.submit(respond, [msg, chat], [msg, chat])
clear.click(lambda: None, None, chat, queue=False)
return demo
# Run Gradio App
if __name__ == "__main__":
interface = create_gradio_interface()
interface.launch(share=True)