File size: 6,303 Bytes
d43fa94 41928ca 102f341 41928ca d43fa94 102f341 d43fa94 102f341 d43fa94 102f341 41928ca 102f341 41928ca d43fa94 102f341 d43fa94 102f341 41928ca 102f341 41928ca 102f341 41928ca 102f341 41928ca 102f341 41928ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import os
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import json
from datetime import datetime
# Set Hugging Face Token for Authentication (ensure it's set in your environment)
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
# Load Llama 3.2 (QLoRA) Model on CPU
MODEL_NAME = "meta-llama/Llama-3.2-1B-Instruct-QLORA_INT4_EO8"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HUGGINGFACE_TOKEN)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
token=HUGGINGFACE_TOKEN,
device_map="cpu" # Force CPU usage
)
# Load Llama Guard for content moderation on CPU
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4"
guard_tokenizer = AutoTokenizer.from_pretrained(LLAMA_GUARD_NAME, token=HUGGINGFACE_TOKEN)
guard_model = AutoModelForCausalLM.from_pretrained(
LLAMA_GUARD_NAME,
token=HUGGINGFACE_TOKEN,
device_map="cpu"
)
# Define Prompt Templates
PROMPTS = {
"project_analysis": """Analyze this project description and generate:
1. Project timeline with milestones
2. Required technology stack
3. Potential risks
4. Team composition
5. Cost estimation
Project: {project_description}""",
"code_generation": """Generate implementation code for this feature:
{feature_description}
Considerations:
- Use {programming_language}
- Follow {coding_standards}
- Include error handling
- Add documentation""",
"risk_analysis": """Predict potential risks for this project plan:
{project_data}
Format output as JSON with risk types, probabilities, and mitigation strategies"""
}
# Function: Content Moderation using Llama Guard
def moderate_input(user_input):
inputs = guard_tokenizer(user_input, return_tensors="pt", max_length=512, truncation=True)
outputs = guard_model.generate(inputs.input_ids, max_length=512)
response = guard_tokenizer.decode(outputs[0], skip_special_tokens=True)
if "flagged" in response.lower():
return "⚠️ Content flagged by Llama Guard. Please modify your input."
return None # Safe input, proceed normally
# Function: Generate AI responses
def generate_response(prompt_type, **kwargs):
prompt = PROMPTS[prompt_type].format(**kwargs)
moderation_warning = moderate_input(prompt)
if moderation_warning:
return moderation_warning # Stop processing if flagged
inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True)
outputs = model.generate(
inputs.input_ids,
max_length=1024,
temperature=0.7 if prompt_type == "project_analysis" else 0.5,
top_p=0.9
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Function: Analyze project
def analyze_project(project_desc):
return generate_response("project_analysis", project_description=project_desc)
# Function: Generate code
def generate_code(feature_desc, lang="Python", standards="PEP8"):
return generate_response("code_generation", feature_description=feature_desc, programming_language=lang, coding_standards=standards)
# Function: Predict risks
def predict_risks(project_data):
risks = generate_response("risk_analysis", project_data=project_data)
try:
return json.loads(risks) # Convert to structured JSON if valid
except json.JSONDecodeError:
return {"error": "Invalid JSON response. Please refine your input."}
# Gradio UI
def create_gradio_interface():
with gr.Blocks(title="AI Project Manager", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🚀 AI-Powered Project Manager & Code Assistant")
# Project Analysis Tab
with gr.Tab("Project Setup"):
project_input = gr.Textbox(label="Project Description", lines=5, placeholder="Describe your project...")
project_output = gr.JSON(label="Project Analysis")
analyze_btn = gr.Button("Analyze Project")
analyze_btn.click(analyze_project, inputs=project_input, outputs=project_output)
# Code Generation Tab
with gr.Tab("Code Assistant"):
code_input = gr.Textbox(label="Feature Description", lines=3)
lang_select = gr.Dropdown(["Python", "JavaScript", "Java", "C++"], label="Language", value="Python")
standards_select = gr.Dropdown(["PEP8", "Google", "Airbnb"], label="Coding Standard", value="PEP8")
code_output = gr.Code(label="Generated Code")
code_btn = gr.Button("Generate Code")
code_btn.click(generate_code, inputs=[code_input, lang_select, standards_select], outputs=code_output)
# Risk Analysis Tab
with gr.Tab("Risk Analysis"):
risk_input = gr.Textbox(label="Project Plan", lines=5)
risk_output = gr.JSON(label="Risk Predictions")
risk_btn = gr.Button("Predict Risks")
risk_btn.click(predict_risks, inputs=risk_input, outputs=risk_output)
# Real-time Chatbot for Collaboration
with gr.Tab("Live Collaboration"):
gr.Markdown("## Real-time Project Collaboration")
chat = gr.Chatbot(height=400)
msg = gr.Textbox(label="Chat with AI PM")
clear = gr.Button("Clear Chat")
def respond(message, chat_history):
moderation_warning = moderate_input(message)
if moderation_warning:
chat_history.append((message, moderation_warning))
return "", chat_history
prompt = f"""Project Management Chat:
Context: {message}
Chat History: {chat_history}
User: {message}
AI:"""
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(inputs.input_ids, max_length=1024)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
chat_history.append((message, response))
return "", chat_history
msg.submit(respond, [msg, chat], [msg, chat])
clear.click(lambda: None, None, chat, queue=False)
return demo
# Run Gradio App
if __name__ == "__main__":
interface = create_gradio_interface()
interface.launch(share=True)
|