File size: 6,303 Bytes
d43fa94
41928ca
102f341
41928ca
 
 
 
d43fa94
 
 
102f341
 
d43fa94
102f341
 
d43fa94
102f341
 
41928ca
102f341
41928ca
d43fa94
102f341
 
d43fa94
102f341
 
41928ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102f341
41928ca
 
 
 
 
 
 
102f341
41928ca
 
 
102f341
41928ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102f341
41928ca
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import json
from datetime import datetime

# Set Hugging Face Token for Authentication (ensure it's set in your environment)
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")

# Load Llama 3.2 (QLoRA) Model on CPU
MODEL_NAME = "meta-llama/Llama-3.2-1B-Instruct-QLORA_INT4_EO8"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HUGGINGFACE_TOKEN)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    token=HUGGINGFACE_TOKEN,
    device_map="cpu"  # Force CPU usage
)

# Load Llama Guard for content moderation on CPU
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4"
guard_tokenizer = AutoTokenizer.from_pretrained(LLAMA_GUARD_NAME, token=HUGGINGFACE_TOKEN)
guard_model = AutoModelForCausalLM.from_pretrained(
    LLAMA_GUARD_NAME,
    token=HUGGINGFACE_TOKEN,
    device_map="cpu"
)

# Define Prompt Templates
PROMPTS = {
    "project_analysis": """Analyze this project description and generate:
1. Project timeline with milestones
2. Required technology stack
3. Potential risks
4. Team composition
5. Cost estimation

Project: {project_description}""",
    
    "code_generation": """Generate implementation code for this feature:
{feature_description}

Considerations:
- Use {programming_language}
- Follow {coding_standards}
- Include error handling
- Add documentation""",

    "risk_analysis": """Predict potential risks for this project plan:
{project_data}

Format output as JSON with risk types, probabilities, and mitigation strategies"""
}

# Function: Content Moderation using Llama Guard
def moderate_input(user_input):
    inputs = guard_tokenizer(user_input, return_tensors="pt", max_length=512, truncation=True)
    outputs = guard_model.generate(inputs.input_ids, max_length=512)
    response = guard_tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    if "flagged" in response.lower():
        return "⚠️ Content flagged by Llama Guard. Please modify your input."
    return None  # Safe input, proceed normally

# Function: Generate AI responses
def generate_response(prompt_type, **kwargs):
    prompt = PROMPTS[prompt_type].format(**kwargs)
    
    moderation_warning = moderate_input(prompt)
    if moderation_warning:
        return moderation_warning  # Stop processing if flagged

    inputs = tokenizer(prompt, return_tensors="pt", max_length=1024, truncation=True)
    
    outputs = model.generate(
        inputs.input_ids,
        max_length=1024,
        temperature=0.7 if prompt_type == "project_analysis" else 0.5,
        top_p=0.9
    )

    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# Function: Analyze project
def analyze_project(project_desc):
    return generate_response("project_analysis", project_description=project_desc)

# Function: Generate code
def generate_code(feature_desc, lang="Python", standards="PEP8"):
    return generate_response("code_generation", feature_description=feature_desc, programming_language=lang, coding_standards=standards)

# Function: Predict risks
def predict_risks(project_data):
    risks = generate_response("risk_analysis", project_data=project_data)
    try:
        return json.loads(risks)  # Convert to structured JSON if valid
    except json.JSONDecodeError:
        return {"error": "Invalid JSON response. Please refine your input."}

# Gradio UI
def create_gradio_interface():
    with gr.Blocks(title="AI Project Manager", theme=gr.themes.Soft()) as demo:
        gr.Markdown("# 🚀 AI-Powered Project Manager & Code Assistant")
        
        # Project Analysis Tab
        with gr.Tab("Project Setup"):
            project_input = gr.Textbox(label="Project Description", lines=5, placeholder="Describe your project...")
            project_output = gr.JSON(label="Project Analysis")
            analyze_btn = gr.Button("Analyze Project")
            analyze_btn.click(analyze_project, inputs=project_input, outputs=project_output)
        
        # Code Generation Tab
        with gr.Tab("Code Assistant"):
            code_input = gr.Textbox(label="Feature Description", lines=3)
            lang_select = gr.Dropdown(["Python", "JavaScript", "Java", "C++"], label="Language", value="Python")
            standards_select = gr.Dropdown(["PEP8", "Google", "Airbnb"], label="Coding Standard", value="PEP8")
            code_output = gr.Code(label="Generated Code")
            code_btn = gr.Button("Generate Code")
            code_btn.click(generate_code, inputs=[code_input, lang_select, standards_select], outputs=code_output)
        
        # Risk Analysis Tab
        with gr.Tab("Risk Analysis"):
            risk_input = gr.Textbox(label="Project Plan", lines=5)
            risk_output = gr.JSON(label="Risk Predictions") 
            risk_btn = gr.Button("Predict Risks")
            risk_btn.click(predict_risks, inputs=risk_input, outputs=risk_output)
        
        # Real-time Chatbot for Collaboration
        with gr.Tab("Live Collaboration"):
            gr.Markdown("## Real-time Project Collaboration")
            chat = gr.Chatbot(height=400)
            msg = gr.Textbox(label="Chat with AI PM")
            clear = gr.Button("Clear Chat")
            
            def respond(message, chat_history):
                moderation_warning = moderate_input(message)
                if moderation_warning:
                    chat_history.append((message, moderation_warning))
                    return "", chat_history

                prompt = f"""Project Management Chat:
                Context: {message}
                Chat History: {chat_history}
                User: {message}
                AI:"""
                
                inputs = tokenizer(prompt, return_tensors="pt")
                outputs = model.generate(inputs.input_ids, max_length=1024)
                response = tokenizer.decode(outputs[0], skip_special_tokens=True)
                chat_history.append((message, response))
                return "", chat_history
            
            msg.submit(respond, [msg, chat], [msg, chat])
            clear.click(lambda: None, None, chat, queue=False)

    return demo

# Run Gradio App
if __name__ == "__main__":
    interface = create_gradio_interface()
    interface.launch(share=True)