File size: 8,321 Bytes
d43fa94 41928ca 3ecadea 41928ca d43fa94 3ecadea b94b847 3ecadea b94b847 3ecadea b94b847 102f341 b94b847 41928ca b94b847 41928ca b94b847 41928ca b94b847 41928ca b94b847 41928ca b94b847 41928ca b94b847 41928ca b94b847 41928ca b94b847 41928ca b94b847 41928ca 102f341 41928ca b94b847 41928ca b94b847 41928ca b94b847 41928ca b94b847 41928ca b94b847 41928ca b94b847 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import os
import gradio as gr
import torch
import json
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
# Set Hugging Face Token for Authentication (ensure it's set in your environment)
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
# Base model (needed for QLoRA adapter)
BASE_MODEL = "meta-llama/Llama-3-1B-Instruct"
QLORA_ADAPTER = "meta-llama/Llama-3.2-1B-Instruct-QLORA_INT4_EO8"
# Function to load Llama model
def load_llama_model():
print("Loading base model...")
model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
torch_dtype=torch.bfloat16 if torch.has_bfloat16 else torch.float32, # Use bfloat16 if available, else float32
device_map="cpu", # Ensure it runs on CPU
token=HUGGINGFACE_TOKEN
)
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL, use_fast=False, token=HUGGINGFACE_TOKEN)
print("Loading QLoRA adapter...")
model = PeftModel.from_pretrained(
model,
QLORA_ADAPTER,
token=HUGGINGFACE_TOKEN
)
print("Merging LoRA weights...")
model = model.merge_and_unload() # Merge LoRA weights for inference
return tokenizer, model
# Load Llama 3.2 model
MODEL_NAME = "meta-llama/Llama-3.2-1B-Instruct-QLORA_INT4_EO8"
tokenizer, model = load_llama_model(MODEL_NAME)
# Load Llama Guard for content moderation
LLAMA_GUARD_NAME = "meta-llama/Llama-Guard-3-1B-INT4"
guard_tokenizer, guard_model = load_llama_model(LLAMA_GUARD_NAME)
# Define Prompt Templates
PROMPTS = {
"project_analysis": """<|begin_of_text|><|prompt|>Analyze this project description and generate:
1. Project timeline with milestones
2. Required technology stack
3. Potential risks
4. Team composition
5. Cost estimation
Project: {project_description}<|completion|>""",
"code_generation": """<|begin_of_text|><|prompt|>Generate implementation code for this feature:
{feature_description}
Considerations:
- Use {programming_language}
- Follow {coding_standards}
- Include error handling
- Add documentation<|completion|>""",
"risk_analysis": """<|begin_of_text|><|prompt|>Predict potential risks for this project plan:
{project_data}
Format output as JSON with risk types, probabilities, and mitigation strategies<|completion|>"""
}
# Function: Content Moderation using Llama Guard
def moderate_input(user_input):
# Llama Guard specific prompt format
prompt = f"""<|begin_of_text|><|user|>
Input: {user_input}
Please verify that this input doesn't violate any content policies.
<|assistant|>"""
inputs = guard_tokenizer(prompt, return_tensors="pt", truncation=True)
with torch.no_grad(): # Disable gradient calculation for inference
outputs = guard_model.generate(
inputs.input_ids,
max_length=256,
temperature=0.1
)
response = guard_tokenizer.decode(outputs[0], skip_special_tokens=True)
if "flagged" in response.lower() or "violated" in response.lower() or "policy violation" in response.lower():
return "⚠️ Content flagged by Llama Guard. Please modify your input."
return None # Safe input, proceed normally
# Function: Generate AI responses
def generate_response(prompt_type, **kwargs):
prompt = PROMPTS[prompt_type].format(**kwargs)
moderation_warning = moderate_input(prompt)
if moderation_warning:
return moderation_warning # Stop processing if flagged
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
with torch.no_grad(): # Disable gradient calculation for inference
outputs = model.generate(
inputs.input_ids,
max_length=1024,
temperature=0.7 if prompt_type == "project_analysis" else 0.5,
top_p=0.9,
do_sample=True
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Function: Analyze project
def analyze_project(project_desc):
return generate_response("project_analysis", project_description=project_desc)
# Function: Generate code
def generate_code(feature_desc, lang="Python", standards="PEP8"):
return generate_response("code_generation", feature_description=feature_desc, programming_language=lang, coding_standards=standards)
# Function: Predict risks
def predict_risks(project_data):
risks = generate_response("risk_analysis", project_data=project_data)
try:
# Try to extract JSON part from the response
import re
json_match = re.search(r'\{.*\}', risks, re.DOTALL)
if json_match:
return json.loads(json_match.group(0))
return {"error": "Could not parse JSON response"}
except json.JSONDecodeError:
return {"error": "Invalid JSON response. Please refine your input."}
# Gradio UI
def create_gradio_interface():
with gr.Blocks(title="AI Project Manager", theme=gr.themes.Soft()) as demo:
gr.Markdown("# 🚀 AI-Powered Project Manager & Code Assistant")
# Project Analysis Tab
with gr.Tab("Project Setup"):
project_input = gr.Textbox(label="Project Description", lines=5, placeholder="Describe your project...")
project_output = gr.Textbox(label="Project Analysis", lines=15) # Changed from JSON to Textbox for better formatting
analyze_btn = gr.Button("Analyze Project")
analyze_btn.click(analyze_project, inputs=project_input, outputs=project_output)
# Code Generation Tab
with gr.Tab("Code Assistant"):
code_input = gr.Textbox(label="Feature Description", lines=3)
lang_select = gr.Dropdown(["Python", "JavaScript", "Java", "C++"], label="Language", value="Python")
standards_select = gr.Dropdown(["PEP8", "Google", "Airbnb"], label="Coding Standard", value="PEP8")
code_output = gr.Code(label="Generated Code")
code_btn = gr.Button("Generate Code")
code_btn.click(generate_code, inputs=[code_input, lang_select, standards_select], outputs=code_output)
# Risk Analysis Tab
with gr.Tab("Risk Analysis"):
risk_input = gr.Textbox(label="Project Plan", lines=5)
risk_output = gr.JSON(label="Risk Predictions")
risk_btn = gr.Button("Predict Risks")
risk_btn.click(predict_risks, inputs=risk_input, outputs=risk_output)
# Real-time Chatbot for Collaboration
with gr.Tab("Live Collaboration"):
gr.Markdown("## Real-time Project Collaboration")
chat = gr.Chatbot(height=400)
msg = gr.Textbox(label="Chat with AI PM")
clear = gr.Button("Clear Chat")
def respond(message, chat_history):
moderation_warning = moderate_input(message)
if moderation_warning:
chat_history.append((message, moderation_warning))
return "", chat_history
# Format chat history for context
history_text = ""
for i, (usr, ai) in enumerate(chat_history[-3:]): # Use last 3 messages for context
history_text += f"User: {usr}\nAI: {ai}\n"
prompt = f"""<|begin_of_text|><|prompt|>Project Management Chat:
Context: {message}
Chat History: {history_text}
User: {message}<|completion|>"""
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_length=1024,
temperature=0.7,
top_p=0.9,
do_sample=True
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
chat_history.append((message, response))
return "", chat_history
msg.submit(respond, [msg, chat], [msg, chat])
clear.click(lambda: None, None, chat, queue=False)
return demo
# Run Gradio App
if __name__ == "__main__":
interface = create_gradio_interface()
interface.launch(share=True) |