Spaces:
Running
Running
import gradio as gr | |
import requests | |
import json | |
import geoutil | |
from shapely.geometry import Polygon, MultiPoint, mapping | |
import re | |
import geopandas as gpd | |
import geo_level1 | |
from openai import OpenAI | |
import numpy as np | |
import os | |
api_key = os.getenv('api_key') | |
client = OpenAI( | |
api_key=api_key | |
) | |
model = "gpt-4o" | |
north = ["north", "N'", "North", "NORTH"] | |
south = ["south", "S'", "South", "SOUTH"] | |
east = ["east", "E'", "East", "EAST"] | |
west = ["west", "W'", "West", "WEST"] | |
northeast = ["north-east", "NE'", "north east", "NORTH-EAST", "North East", "NORTH EAST"] | |
southeast = ["south-east", "SE'", "south east", "SOUTH-EAST", "South East", "SOUTH EAST"] | |
northwest = ["north-west", "NW'", "north west", "NORTH-WEST", "North West", "NORTH WEST"] | |
southwest = ["south-west", "SW'", "south west", "SOUTH-WEST", "South West", "SOUTH WEST"] | |
center = ["center","central", "downtown","midtown"] | |
def to_standard_2d_list(data): | |
arr = np.array(data) | |
# 强制变成一维后 reshape,前提是元素总数是2的倍数 | |
flat = arr.flatten() | |
if flat.size % 2 != 0: | |
raise ValueError("元素个数不是2的倍数,不能 reshape 成 [N, 2] 格式") | |
return flat.reshape(-1, 2).tolist() | |
def get_geojson(ent, arr, centroid): | |
poly_json = {} | |
poly_json['type'] = 'FeatureCollection' | |
poly_json['features'] = [] | |
coordinates= [] | |
coordinates.append(arr) | |
poly_json['features'].append({ | |
'type':'Feature', | |
'id': ent, | |
'properties': { | |
'centroid': centroid | |
}, | |
'geometry': { | |
'type':'Polygon', | |
'coordinates': coordinates | |
} | |
}) | |
return poly_json | |
def get_coordinates(ent): | |
request_url = 'https://nominatim.openstreetmap.org/search.php?q= ' +ent +'&polygon_geojson=1&accept-language=en&format=jsonv2' | |
headers = { | |
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/18.3 Safari/605.1.15" | |
} | |
page = requests.get(request_url, headers=headers, verify=False) | |
json_content = json.loads(page.content) | |
all_coordinates = json_content[0]['geojson']['coordinates'][0] | |
centroid = (float(json_content[0]['lon']), float(json_content[0]['lat'])) | |
for p in all_coordinates: | |
p2 = (p[0], p[1]) | |
angle = geoutil.calculate_bearing(centroid, p2) | |
p.append(angle) | |
geojson = get_geojson(ent, all_coordinates, centroid) | |
return geojson['features'][0]['geometry']['coordinates'][0], geojson['features'][0]['properties']['centroid'] | |
def get_coordinates(location): | |
request_url = f'https://nominatim.openstreetmap.org/search.php?q={location}&polygon_geojson=1&accept-language=en&format=jsonv2' | |
print(request_url) | |
headers = {"User-Agent": "Mozilla/5.0"} | |
response = requests.get(request_url, headers=headers, verify=False) | |
json_content = json.loads(response.content) | |
# print(json_content) | |
if json_content[0]['geojson']['type'] == 'Polygon': | |
coordinates = json_content[0]['geojson']['coordinates'][0] | |
elif json_content[0]['geojson']['type'] == 'Point': | |
coordinates = json_content[0]['geojson']['coordinates'] | |
elif json_content[0]['geojson']['type'] == 'MultiPolygon': | |
coordinates = json_content[0]['geojson']['coordinates'][0][0] | |
else: | |
coordinates = get_inner(json_content[0]['geojson']['coordinates']) | |
print(json_content[0]['geojson']['type'], 'refref') | |
centroid = (float(json_content[0]['lon']), float(json_content[0]['lat'])) | |
return (coordinates, centroid) | |
# level3 | |
def get_directional_coordinates_by_angle(coordinates, centroid, direction, minimum, maximum): | |
# minimum = 157 | |
# maximum = 202 | |
direction_coordinates = [] | |
for p in coordinates: | |
angle = geoutil.calculate_bearing(centroid, p) | |
p2 = (p[0], p[1], angle) | |
if direction in geo_level1.east: | |
if angle >= minimum or angle <= maximum: | |
direction_coordinates.append(p2) | |
else: | |
if angle >= minimum and angle <= maximum: | |
direction_coordinates.append(p2) | |
# print(type(direction_coordinates[0])) | |
# if(direction in geo_level1.west): | |
# direction_coordinates.sort(key=lambda k: k[2], reverse=True) | |
return direction_coordinates | |
def get_level3(level3): | |
digits = re.findall('[0-9]+', level3)[0] | |
unit = re.findall('[A-Za-z]+', level3)[0] | |
return digits, unit | |
def get_direction_coordinates(coordinates, centroid, level1): | |
min_max = geo_level1.get_min_max(level1) | |
if min_max is not None: | |
coord = get_directional_coordinates_by_angle(coordinates, centroid, level1, min_max[0], min_max[1]) | |
return coord | |
return coordinates | |
def sort_west(poly1, poly2, centroid): | |
coords1 = mapping(poly1)["features"][0]["geometry"]["coordinates"] | |
coords2 = mapping(poly2)["features"][0]["geometry"]["coordinates"] | |
coord1 = [] | |
coord2 = [] | |
coord = [] | |
for c in coords1: | |
pol = list(c[::-1]) | |
coord1.extend(pol) | |
for c in coords2: | |
pol = list(c[::-1]) | |
coord2.extend(pol) | |
coo1 = [] | |
coo2 = [] | |
for p in coord1: | |
angle = geoutil.calculate_bearing(centroid, p) | |
if angle >= 157 and angle <= 202: | |
coo1.append((p[0], p[1], angle)) | |
for p in coord2: | |
angle = geoutil.calculate_bearing(centroid, p) | |
if angle >= 157 and angle <= 202: | |
coo2.append((p[0], p[1], angle)) | |
coo1.extend(coo2) | |
return coo1 | |
def get_level3_coordinates(coordinates, level_3, level1): | |
distance, unit = get_level3(level_3) | |
kms = geoutil.get_kilometers(distance, unit) | |
coord = [] | |
coords0, center = coordinates | |
if not isinstance(coords0, list) or len(coords0) < 3: | |
# 从原始点出发,根据方向移动距离 kms 得到新圆心 | |
lat_km = 111.32 | |
lon_km = 111.32 * np.cos(np.radians(center[1])) | |
dx = dy = 0 | |
if level1 is not None: | |
if level1 in geo_level1.east: | |
dx = kms / lon_km | |
elif level1 in geo_level1.west: | |
dx = -kms / lon_km | |
elif level1 in geo_level1.north: | |
dy = kms / lat_km | |
elif level1 in geo_level1.south: | |
dy = -kms / lat_km | |
# 你也可以支持 northeast、southwest 等复合方向 | |
new_center = (center[0] + dx, center[1] + dy) | |
# 用固定半径画个圆(例如半径2km) | |
r_km = 1 # 半径设为1km,你也可以设为其他值 | |
circle_points = [] | |
for theta in np.linspace(0, 360, num=100): | |
theta_rad = np.radians(theta) | |
d_lat = (np.sin(theta_rad) * r_km) / lat_km | |
d_lon = (np.cos(theta_rad) * r_km) / lon_km | |
circle_points.append((new_center[0] + d_lon, new_center[1] + d_lat)) | |
# 输出中心(使用新圆心) | |
if circle_points: | |
center_point = MultiPoint(circle_points).centroid | |
center = (center_point.x, center_point.y) | |
else: | |
center = new_center | |
return circle_points, center | |
# 正常 polygon 流程 | |
poly1 = Polygon(coords0) | |
polygon1 = gpd.GeoSeries(poly1) | |
# 生成环形区域 | |
poly2 = polygon1.buffer(0.0095 * kms, join_style=2) | |
poly3 = polygon1.buffer(0.013 * kms, join_style=2) | |
poly = poly3.difference(poly2) | |
# 获取坐标 | |
coords = mapping(poly)["features"][0]["geometry"]["coordinates"] | |
for c in coords: | |
pol = list(c[::-1]) | |
coord.extend(pol) | |
# 方向裁剪 | |
if level1 is not None: | |
coord = get_direction_coordinates(coord, coordinates[1], level1) | |
if level1 in geo_level1.west: | |
coord = sort_west(poly3, poly2, coordinates[1]) | |
# 计算质心 | |
if coord: | |
center_point = MultiPoint(coord).centroid | |
center = (center_point.x, center_point.y) | |
else: | |
center = coordinates[1] | |
return coord, center | |
# level 3 end | |
# between | |
def get_between_coordinates(coordinates1, coordinates2): | |
""" | |
计算两个区域之间的中间点,并生成一个等面积的圆形区域。 | |
如果某个输入仅为点(坐标长度 < 3),则其面积设为 0; | |
如果两个输入都是点,则默认半径为 2km。 | |
:param coordinates1: 第一个区域的边界坐标和中心点 | |
:param coordinates2: 第二个区域的边界坐标和中心点 | |
:return: 圆形区域的坐标集和圆心 | |
""" | |
def is_valid_polygon(coords): | |
return isinstance(coords, list) and len(coords) >= 3 | |
coords1, center1 = coordinates1 | |
coords2, center2 = coordinates2 | |
# 判断输入是否为合法多边形(>=3个点) | |
if is_valid_polygon(coords1): | |
poly1 = Polygon(coords1) | |
area1 = poly1.area | |
else: | |
area1 = 0 | |
if is_valid_polygon(coords2): | |
poly2 = Polygon(coords2) | |
area2 = poly2.area | |
else: | |
area2 = 0 | |
# 计算中心点(两个中心的中点) | |
midpoint = ( | |
(center1[0] + center2[0]) / 2, | |
(center1[1] + center2[1]) / 2 | |
) | |
# 如果两个区域都是点,则使用默认半径 2km | |
if area1 == 0 and area2 == 0: | |
r_km = 2 | |
else: | |
avg_area = (area1 + area2) / 2 | |
r_km = np.sqrt(avg_area / np.pi) * 111.32 # 近似 km 半径 | |
# 经纬度距离换算因子 | |
lat_km = 111.32 | |
lon_km = 111.32 * np.cos(np.radians(midpoint[1])) | |
# 生成圆形区域坐标(100个点) | |
circle_points = [] | |
for theta in np.linspace(0, 360, num=100): | |
theta_rad = np.radians(theta) | |
d_lat = (np.sin(theta_rad) * r_km) / lat_km | |
d_lon = (np.cos(theta_rad) * r_km) / lon_km | |
circle_points.append((midpoint[0] + d_lon, midpoint[1] + d_lat)) | |
return circle_points, midpoint | |
# between end | |
def llmapi(text): | |
system_prompt = ( | |
"你是一个资深的地理学家,你的任务是通过给定的一段自然语言,来选择正确的定位函数顺序以及他们的输入。\n" | |
"你能选择的定位函数有:\n" | |
"1. 相对定位(Relative Positioning):输入为地点坐标,方位,距离。输出为距离‘距离’输入的地点坐标的‘方位’的坐标。\n" | |
"2. 中间定位(Between Positioning):输入为两个地点的坐标,输出为两个地点坐标的中点。\n" | |
"请先进行思维链(CoT)推理,并最终用 JSON 格式输出你的答案,用 `<<<JSON>>>` 和 `<<<END>>>` 包裹起来。\n" | |
"请确保所有输入仅包含:地点名称(字符串)、索引(整数)、方位(字符串,必须是英文)或距离(字符串,带单位),不允许返回诸如 'Chatswood 南4 km的坐标' 这样的内容。\n" | |
"每个步骤编号都有 id 记录,然后如果某个输入是之前步骤的输出,那么输入对应步骤的 id。\n" | |
"所有方向必须使用英文(如 south, west, northeast, etc.)。\n" | |
"示例输出:\n" | |
"<<<JSON>>>\n" | |
"[{\"id\": 1, \"function\": \"Relative\", \"inputs\": [\"Chatswood\", \"south\", \"4 km\"]}," | |
"{\"id\": 2, \"function\": \"Relative\", \"inputs\": [\"North Sydney\", \"west\", \"2 km\"]}," | |
"{\"id\": 3, \"function\": \"Between\", \"inputs\": [1, 2]}," | |
"{\"id\": 4, \"function\": \"Relative\", \"inputs\": [3, \"southwest\", \"5 km\"]}]\n" | |
"<<<END>>>") | |
messages = [ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": text}, | |
] | |
chat_completion = client.chat.completions.create( | |
messages=messages, | |
model=model, | |
) | |
result = chat_completion.choices[0].message.content | |
json_match = re.search(r'<<<JSON>>>\n(.*?)\n<<<END>>>', result, re.DOTALL) | |
if json_match: | |
# print(json.loads(json_match.group(1))) | |
return json.loads(json_match.group(1)) | |
else: | |
raise ValueError("LLM 输出未包含预期的 JSON 格式数据。") | |
def llmapi(text): | |
system_prompt = ( | |
"You are an experienced geographer. Your task is to determine the correct sequence of positioning functions and their inputs based on a given piece of natural language.\n" | |
"The positioning functions you can choose from are:\n" | |
"1. Relative Positioning: Inputs is (location coordinate or location name, direction, and distance). Outputs the coordinates that are in the given 'direction' and 'distance' from the input location.\n" | |
"2. Between Positioning: Inputs is (location 1 coordinates or location 1 name, location 2 coordinates or location 2 name). Outputs the midpoint coordinate between the two locations.\n" | |
"You can only use the given functions, and the inputs to the functions must obey the above properties. The given functions can be combined to solve complex situations." | |
"First, perform chain-of-thought (CoT) reasoning, and finally output your answer in JSON format, wrapped between `<<<JSON>>>` and `<<<END>>>`.\n" | |
"Make sure all inputs only include: location names (strings), step indices (integers), directions (strings, must be in English), or distances (strings with units). Do not return expressions like 'the coordinate 4 km south of Chatswood'.\n" | |
"Each step must have an 'id'. If the input of a step is the output of a previous step, use that step’s 'id' as the input.\n" | |
"All directions must be in English (e.g., south, west, northeast, etc.).\n" | |
"Example output:\n" | |
"<<<JSON>>>\n" | |
"[{\"id\": 1, \"function\": \"Relative\", \"inputs\": [\"Chatswood\", \"south\", \"4 km\"]}," | |
"{\"id\": 2, \"function\": \"Relative\", \"inputs\": [\"North Sydney\", \"west\", \"2 km\"]}," | |
"{\"id\": 3, \"function\": \"Between\", \"inputs\": [1, 2]}," | |
"{\"id\": 4, \"function\": \"Relative\", \"inputs\": [3, \"southwest\", \"5 km\"]}]\n" | |
"<<<END>>>") | |
messages = [ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": text}, | |
] | |
chat_completion = client.chat.completions.create( | |
messages=messages, | |
model=model, | |
) | |
result = chat_completion.choices[0].message.content | |
print(result) | |
json_match = re.search(r'<<<JSON>>>\n(.*?)\n<<<END>>>', result, re.DOTALL) | |
if json_match: | |
return json.loads(json_match.group(1)) | |
else: | |
raise ValueError("LLM 输出未包含预期的 JSON 格式数据。") | |
def execute_steps(steps): | |
data = {} | |
for step in steps: | |
step_id = step['id'] | |
function = step['function'] | |
inputs = step['inputs'] | |
# print('-' * 50) | |
# print(function) | |
# print(inputs) | |
resolved_inputs = [] | |
for inp in inputs: | |
if isinstance(inp, int): | |
resolved_inputs.append(data[inp]) | |
else: | |
resolved_inputs.append(inp) | |
if function == "Relative": | |
location, direction, distance = resolved_inputs | |
if isinstance(location, str): | |
location = get_coordinates(location) | |
location = [to_standard_2d_list(location[0])] + list(location[1:]) | |
location = [[[151.214901,-33.859175]], (151.214901,-33.859175)] | |
result = get_level3_coordinates(location, distance, direction) | |
data[step_id] = result | |
elif function == "Between": | |
location1, location2 = resolved_inputs | |
# print(location1) | |
# print(111) | |
# print(location2) | |
if isinstance(location1, str): | |
location1 = get_coordinates(location1) | |
location1 = [to_standard_2d_list(location1[0])] + list(location1[1:]) | |
if isinstance(location2, str): | |
location2 = get_coordinates(location2) | |
location2 = [to_standard_2d_list(location2[0])] + list(location2[1:]) | |
result = get_between_coordinates(location1, location2) | |
data[step_id] = result | |
return data | |
def process_api(input_text): | |
# 这里编写实际的后端处理逻辑 | |
# return { | |
# "status": "success", | |
# # "result": f"Processed: {input_text.upper()}", | |
# "result": f"Processed: {nlp(input_text).to_json()}", | |
# "timestamp": time.time() | |
# } | |
parsed_steps = llmapi(input_text) | |
result = execute_steps(parsed_steps) | |
coords = result[(max(result.keys()))] | |
geojson = get_geojson(None, coords[0], coords[1]) | |
return geojson | |
def process_api(input_text): | |
return get_coordinates(input_text) | |
# get_coordinates(location) | |
request_url = 'https://nominatim.openstreetmap.org/search.php?q=Glebe&polygon_geojson=1&accept-language=en&format=jsonv2' | |
headers = { | |
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/18.3 Safari/605.1.15" | |
} | |
page1 = requests.get(request_url, headers=headers, verify=False) | |
cont = page1.content | |
# 设置API格式为JSON | |
gr.Interface( | |
fn=process_api, | |
# fn=cont, | |
inputs="text", | |
outputs="json", | |
title="Backend API", | |
allow_flagging="never" | |
).launch(debug=True) | |