Spaces:
Running
Running
File size: 17,146 Bytes
0b8e6eb b247a03 0b8e6eb b247a03 0b8e6eb b247a03 0b8e6eb b247a03 75b6512 b247a03 75b6512 b247a03 75b6512 b247a03 75b6512 b247a03 0b8e6eb b247a03 8557709 b247a03 8557709 b247a03 0dbbd06 b247a03 0dbbd06 b247a03 0b8e6eb b247a03 0b8e6eb 828ef59 f317a3e 828ef59 539f97a 0b8e6eb 843b338 0b8e6eb b247a03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
import gradio as gr
import requests
import json
import geoutil
from shapely.geometry import Polygon, MultiPoint, mapping
import re
import geopandas as gpd
import geo_level1
from openai import OpenAI
import numpy as np
import os
api_key = os.getenv('api_key')
client = OpenAI(
api_key=api_key
)
model = "gpt-4o"
north = ["north", "N'", "North", "NORTH"]
south = ["south", "S'", "South", "SOUTH"]
east = ["east", "E'", "East", "EAST"]
west = ["west", "W'", "West", "WEST"]
northeast = ["north-east", "NE'", "north east", "NORTH-EAST", "North East", "NORTH EAST"]
southeast = ["south-east", "SE'", "south east", "SOUTH-EAST", "South East", "SOUTH EAST"]
northwest = ["north-west", "NW'", "north west", "NORTH-WEST", "North West", "NORTH WEST"]
southwest = ["south-west", "SW'", "south west", "SOUTH-WEST", "South West", "SOUTH WEST"]
center = ["center","central", "downtown","midtown"]
def to_standard_2d_list(data):
arr = np.array(data)
# 强制变成一维后 reshape,前提是元素总数是2的倍数
flat = arr.flatten()
if flat.size % 2 != 0:
raise ValueError("元素个数不是2的倍数,不能 reshape 成 [N, 2] 格式")
return flat.reshape(-1, 2).tolist()
def get_geojson(ent, arr, centroid):
poly_json = {}
poly_json['type'] = 'FeatureCollection'
poly_json['features'] = []
coordinates= []
coordinates.append(arr)
poly_json['features'].append({
'type':'Feature',
'id': ent,
'properties': {
'centroid': centroid
},
'geometry': {
'type':'Polygon',
'coordinates': coordinates
}
})
return poly_json
def get_coordinates(ent):
request_url = 'https://nominatim.openstreetmap.org/search.php?q= ' +ent +'&polygon_geojson=1&accept-language=en&format=jsonv2'
headers = {
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/18.3 Safari/605.1.15"
}
page = requests.get(request_url, headers=headers, verify=False)
json_content = json.loads(page.content)
all_coordinates = json_content[0]['geojson']['coordinates'][0]
centroid = (float(json_content[0]['lon']), float(json_content[0]['lat']))
for p in all_coordinates:
p2 = (p[0], p[1])
angle = geoutil.calculate_bearing(centroid, p2)
p.append(angle)
geojson = get_geojson(ent, all_coordinates, centroid)
return geojson['features'][0]['geometry']['coordinates'][0], geojson['features'][0]['properties']['centroid']
def get_coordinates(location):
request_url = f'https://nominatim.openstreetmap.org/search.php?q={location}&polygon_geojson=1&accept-language=en&format=jsonv2'
print(request_url)
headers = {"User-Agent": "Mozilla/5.0"}
response = requests.get(request_url, headers=headers, verify=False)
json_content = json.loads(response.content)
# print(json_content)
if json_content[0]['geojson']['type'] == 'Polygon':
coordinates = json_content[0]['geojson']['coordinates'][0]
elif json_content[0]['geojson']['type'] == 'Point':
coordinates = json_content[0]['geojson']['coordinates']
elif json_content[0]['geojson']['type'] == 'MultiPolygon':
coordinates = json_content[0]['geojson']['coordinates'][0][0]
else:
coordinates = get_inner(json_content[0]['geojson']['coordinates'])
print(json_content[0]['geojson']['type'], 'refref')
centroid = (float(json_content[0]['lon']), float(json_content[0]['lat']))
return (coordinates, centroid)
# level3
def get_directional_coordinates_by_angle(coordinates, centroid, direction, minimum, maximum):
# minimum = 157
# maximum = 202
direction_coordinates = []
for p in coordinates:
angle = geoutil.calculate_bearing(centroid, p)
p2 = (p[0], p[1], angle)
if direction in geo_level1.east:
if angle >= minimum or angle <= maximum:
direction_coordinates.append(p2)
else:
if angle >= minimum and angle <= maximum:
direction_coordinates.append(p2)
# print(type(direction_coordinates[0]))
# if(direction in geo_level1.west):
# direction_coordinates.sort(key=lambda k: k[2], reverse=True)
return direction_coordinates
def get_level3(level3):
digits = re.findall('[0-9]+', level3)[0]
unit = re.findall('[A-Za-z]+', level3)[0]
return digits, unit
def get_direction_coordinates(coordinates, centroid, level1):
min_max = geo_level1.get_min_max(level1)
if min_max is not None:
coord = get_directional_coordinates_by_angle(coordinates, centroid, level1, min_max[0], min_max[1])
return coord
return coordinates
def sort_west(poly1, poly2, centroid):
coords1 = mapping(poly1)["features"][0]["geometry"]["coordinates"]
coords2 = mapping(poly2)["features"][0]["geometry"]["coordinates"]
coord1 = []
coord2 = []
coord = []
for c in coords1:
pol = list(c[::-1])
coord1.extend(pol)
for c in coords2:
pol = list(c[::-1])
coord2.extend(pol)
coo1 = []
coo2 = []
for p in coord1:
angle = geoutil.calculate_bearing(centroid, p)
if angle >= 157 and angle <= 202:
coo1.append((p[0], p[1], angle))
for p in coord2:
angle = geoutil.calculate_bearing(centroid, p)
if angle >= 157 and angle <= 202:
coo2.append((p[0], p[1], angle))
coo1.extend(coo2)
return coo1
def get_level3_coordinates(coordinates, level_3, level1):
distance, unit = get_level3(level_3)
kms = geoutil.get_kilometers(distance, unit)
coord = []
coords0, center = coordinates
if not isinstance(coords0, list) or len(coords0) < 3:
# 从原始点出发,根据方向移动距离 kms 得到新圆心
lat_km = 111.32
lon_km = 111.32 * np.cos(np.radians(center[1]))
dx = dy = 0
if level1 is not None:
if level1 in geo_level1.east:
dx = kms / lon_km
elif level1 in geo_level1.west:
dx = -kms / lon_km
elif level1 in geo_level1.north:
dy = kms / lat_km
elif level1 in geo_level1.south:
dy = -kms / lat_km
# 你也可以支持 northeast、southwest 等复合方向
new_center = (center[0] + dx, center[1] + dy)
# 用固定半径画个圆(例如半径2km)
r_km = 1 # 半径设为1km,你也可以设为其他值
circle_points = []
for theta in np.linspace(0, 360, num=100):
theta_rad = np.radians(theta)
d_lat = (np.sin(theta_rad) * r_km) / lat_km
d_lon = (np.cos(theta_rad) * r_km) / lon_km
circle_points.append((new_center[0] + d_lon, new_center[1] + d_lat))
# 输出中心(使用新圆心)
if circle_points:
center_point = MultiPoint(circle_points).centroid
center = (center_point.x, center_point.y)
else:
center = new_center
return circle_points, center
# 正常 polygon 流程
poly1 = Polygon(coords0)
polygon1 = gpd.GeoSeries(poly1)
# 生成环形区域
poly2 = polygon1.buffer(0.0095 * kms, join_style=2)
poly3 = polygon1.buffer(0.013 * kms, join_style=2)
poly = poly3.difference(poly2)
# 获取坐标
coords = mapping(poly)["features"][0]["geometry"]["coordinates"]
for c in coords:
pol = list(c[::-1])
coord.extend(pol)
# 方向裁剪
if level1 is not None:
coord = get_direction_coordinates(coord, coordinates[1], level1)
if level1 in geo_level1.west:
coord = sort_west(poly3, poly2, coordinates[1])
# 计算质心
if coord:
center_point = MultiPoint(coord).centroid
center = (center_point.x, center_point.y)
else:
center = coordinates[1]
return coord, center
# level 3 end
# between
def get_between_coordinates(coordinates1, coordinates2):
"""
计算两个区域之间的中间点,并生成一个等面积的圆形区域。
如果某个输入仅为点(坐标长度 < 3),则其面积设为 0;
如果两个输入都是点,则默认半径为 2km。
:param coordinates1: 第一个区域的边界坐标和中心点
:param coordinates2: 第二个区域的边界坐标和中心点
:return: 圆形区域的坐标集和圆心
"""
def is_valid_polygon(coords):
return isinstance(coords, list) and len(coords) >= 3
coords1, center1 = coordinates1
coords2, center2 = coordinates2
# 判断输入是否为合法多边形(>=3个点)
if is_valid_polygon(coords1):
poly1 = Polygon(coords1)
area1 = poly1.area
else:
area1 = 0
if is_valid_polygon(coords2):
poly2 = Polygon(coords2)
area2 = poly2.area
else:
area2 = 0
# 计算中心点(两个中心的中点)
midpoint = (
(center1[0] + center2[0]) / 2,
(center1[1] + center2[1]) / 2
)
# 如果两个区域都是点,则使用默认半径 2km
if area1 == 0 and area2 == 0:
r_km = 2
else:
avg_area = (area1 + area2) / 2
r_km = np.sqrt(avg_area / np.pi) * 111.32 # 近似 km 半径
# 经纬度距离换算因子
lat_km = 111.32
lon_km = 111.32 * np.cos(np.radians(midpoint[1]))
# 生成圆形区域坐标(100个点)
circle_points = []
for theta in np.linspace(0, 360, num=100):
theta_rad = np.radians(theta)
d_lat = (np.sin(theta_rad) * r_km) / lat_km
d_lon = (np.cos(theta_rad) * r_km) / lon_km
circle_points.append((midpoint[0] + d_lon, midpoint[1] + d_lat))
return circle_points, midpoint
# between end
def llmapi(text):
system_prompt = (
"你是一个资深的地理学家,你的任务是通过给定的一段自然语言,来选择正确的定位函数顺序以及他们的输入。\n"
"你能选择的定位函数有:\n"
"1. 相对定位(Relative Positioning):输入为地点坐标,方位,距离。输出为距离‘距离’输入的地点坐标的‘方位’的坐标。\n"
"2. 中间定位(Between Positioning):输入为两个地点的坐标,输出为两个地点坐标的中点。\n"
"请先进行思维链(CoT)推理,并最终用 JSON 格式输出你的答案,用 `<<<JSON>>>` 和 `<<<END>>>` 包裹起来。\n"
"请确保所有输入仅包含:地点名称(字符串)、索引(整数)、方位(字符串,必须是英文)或距离(字符串,带单位),不允许返回诸如 'Chatswood 南4 km的坐标' 这样的内容。\n"
"每个步骤编号都有 id 记录,然后如果某个输入是之前步骤的输出,那么输入对应步骤的 id。\n"
"所有方向必须使用英文(如 south, west, northeast, etc.)。\n"
"示例输出:\n"
"<<<JSON>>>\n"
"[{\"id\": 1, \"function\": \"Relative\", \"inputs\": [\"Chatswood\", \"south\", \"4 km\"]},"
"{\"id\": 2, \"function\": \"Relative\", \"inputs\": [\"North Sydney\", \"west\", \"2 km\"]},"
"{\"id\": 3, \"function\": \"Between\", \"inputs\": [1, 2]},"
"{\"id\": 4, \"function\": \"Relative\", \"inputs\": [3, \"southwest\", \"5 km\"]}]\n"
"<<<END>>>")
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": text},
]
chat_completion = client.chat.completions.create(
messages=messages,
model=model,
)
result = chat_completion.choices[0].message.content
json_match = re.search(r'<<<JSON>>>\n(.*?)\n<<<END>>>', result, re.DOTALL)
if json_match:
# print(json.loads(json_match.group(1)))
return json.loads(json_match.group(1))
else:
raise ValueError("LLM 输出未包含预期的 JSON 格式数据。")
def llmapi(text):
system_prompt = (
"You are an experienced geographer. Your task is to determine the correct sequence of positioning functions and their inputs based on a given piece of natural language.\n"
"The positioning functions you can choose from are:\n"
"1. Relative Positioning: Inputs is (location coordinate or location name, direction, and distance). Outputs the coordinates that are in the given 'direction' and 'distance' from the input location.\n"
"2. Between Positioning: Inputs is (location 1 coordinates or location 1 name, location 2 coordinates or location 2 name). Outputs the midpoint coordinate between the two locations.\n"
"You can only use the given functions, and the inputs to the functions must obey the above properties. The given functions can be combined to solve complex situations."
"First, perform chain-of-thought (CoT) reasoning, and finally output your answer in JSON format, wrapped between `<<<JSON>>>` and `<<<END>>>`.\n"
"Make sure all inputs only include: location names (strings), step indices (integers), directions (strings, must be in English), or distances (strings with units). Do not return expressions like 'the coordinate 4 km south of Chatswood'.\n"
"Each step must have an 'id'. If the input of a step is the output of a previous step, use that step’s 'id' as the input.\n"
"All directions must be in English (e.g., south, west, northeast, etc.).\n"
"Example output:\n"
"<<<JSON>>>\n"
"[{\"id\": 1, \"function\": \"Relative\", \"inputs\": [\"Chatswood\", \"south\", \"4 km\"]},"
"{\"id\": 2, \"function\": \"Relative\", \"inputs\": [\"North Sydney\", \"west\", \"2 km\"]},"
"{\"id\": 3, \"function\": \"Between\", \"inputs\": [1, 2]},"
"{\"id\": 4, \"function\": \"Relative\", \"inputs\": [3, \"southwest\", \"5 km\"]}]\n"
"<<<END>>>")
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": text},
]
chat_completion = client.chat.completions.create(
messages=messages,
model=model,
)
result = chat_completion.choices[0].message.content
print(result)
json_match = re.search(r'<<<JSON>>>\n(.*?)\n<<<END>>>', result, re.DOTALL)
if json_match:
return json.loads(json_match.group(1))
else:
raise ValueError("LLM 输出未包含预期的 JSON 格式数据。")
def execute_steps(steps):
data = {}
for step in steps:
step_id = step['id']
function = step['function']
inputs = step['inputs']
# print('-' * 50)
# print(function)
# print(inputs)
resolved_inputs = []
for inp in inputs:
if isinstance(inp, int):
resolved_inputs.append(data[inp])
else:
resolved_inputs.append(inp)
if function == "Relative":
location, direction, distance = resolved_inputs
if isinstance(location, str):
location = get_coordinates(location)
location = [to_standard_2d_list(location[0])] + list(location[1:])
location = [[[151.214901,-33.859175]], (151.214901,-33.859175)]
result = get_level3_coordinates(location, distance, direction)
data[step_id] = result
elif function == "Between":
location1, location2 = resolved_inputs
# print(location1)
# print(111)
# print(location2)
if isinstance(location1, str):
location1 = get_coordinates(location1)
location1 = [to_standard_2d_list(location1[0])] + list(location1[1:])
if isinstance(location2, str):
location2 = get_coordinates(location2)
location2 = [to_standard_2d_list(location2[0])] + list(location2[1:])
result = get_between_coordinates(location1, location2)
data[step_id] = result
return data
def process_api(input_text):
# 这里编写实际的后端处理逻辑
# return {
# "status": "success",
# # "result": f"Processed: {input_text.upper()}",
# "result": f"Processed: {nlp(input_text).to_json()}",
# "timestamp": time.time()
# }
parsed_steps = llmapi(input_text)
result = execute_steps(parsed_steps)
coords = result[(max(result.keys()))]
geojson = get_geojson(None, coords[0], coords[1])
return geojson
def process_api(input_text):
return get_coordinates(input_text)
# get_coordinates(location)
request_url = 'https://nominatim.openstreetmap.org/search.php?q=Glebe&polygon_geojson=1&accept-language=en&format=jsonv2'
headers = {
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/18.3 Safari/605.1.15"
}
page1 = requests.get(request_url, headers=headers, verify=False)
cont = page1.content
# 设置API格式为JSON
gr.Interface(
fn=process_api,
# fn=cont,
inputs="text",
outputs="json",
title="Backend API",
allow_flagging="never"
).launch(debug=True)
|