Spaces:
Running
Running
Upload 3 files
Browse files- README.md +8 -8
- app.py +457 -0
- requirements.txt +5 -0
README.md
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
|
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: dockerb2.1
|
3 |
+
emoji: 🔧
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.50.2
|
8 |
+
private: true
|
9 |
app_file: app.py
|
10 |
pinned: false
|
11 |
+
license: mit
|
12 |
+
---
|
|
app.py
ADDED
@@ -0,0 +1,457 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import json
|
4 |
+
import geoutil
|
5 |
+
from shapely.geometry import Polygon, MultiPoint, mapping
|
6 |
+
import re
|
7 |
+
import geopandas as gpd
|
8 |
+
import geo_level1
|
9 |
+
from openai import OpenAI
|
10 |
+
import numpy as np
|
11 |
+
import os
|
12 |
+
|
13 |
+
api_key = os.getenv('api_key')
|
14 |
+
client = OpenAI(
|
15 |
+
api_key=api_key
|
16 |
+
)
|
17 |
+
|
18 |
+
model = "gpt-4o"
|
19 |
+
|
20 |
+
north = ["north", "N'", "North", "NORTH"]
|
21 |
+
south = ["south", "S'", "South", "SOUTH"]
|
22 |
+
east = ["east", "E'", "East", "EAST"]
|
23 |
+
west = ["west", "W'", "West", "WEST"]
|
24 |
+
northeast = ["north-east", "NE'", "north east", "NORTH-EAST", "North East", "NORTH EAST"]
|
25 |
+
southeast = ["south-east", "SE'", "south east", "SOUTH-EAST", "South East", "SOUTH EAST"]
|
26 |
+
northwest = ["north-west", "NW'", "north west", "NORTH-WEST", "North West", "NORTH WEST"]
|
27 |
+
southwest = ["south-west", "SW'", "south west", "SOUTH-WEST", "South West", "SOUTH WEST"]
|
28 |
+
center = ["center","central", "downtown","midtown"]
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
def to_standard_2d_list(data):
|
34 |
+
arr = np.array(data)
|
35 |
+
|
36 |
+
# 强制变成一维后 reshape,前提是元素总数是2的倍数
|
37 |
+
flat = arr.flatten()
|
38 |
+
if flat.size % 2 != 0:
|
39 |
+
raise ValueError("元素个数不是2的倍数,不能 reshape 成 [N, 2] 格式")
|
40 |
+
|
41 |
+
return flat.reshape(-1, 2).tolist()
|
42 |
+
|
43 |
+
|
44 |
+
def get_geojson(ent, arr, centroid):
|
45 |
+
poly_json = {}
|
46 |
+
poly_json['type'] = 'FeatureCollection'
|
47 |
+
poly_json['features'] = []
|
48 |
+
coordinates= []
|
49 |
+
coordinates.append(arr)
|
50 |
+
poly_json['features'].append({
|
51 |
+
'type':'Feature',
|
52 |
+
'id': ent,
|
53 |
+
'properties': {
|
54 |
+
'centroid': centroid
|
55 |
+
},
|
56 |
+
'geometry': {
|
57 |
+
'type':'Polygon',
|
58 |
+
'coordinates': coordinates
|
59 |
+
}
|
60 |
+
})
|
61 |
+
return poly_json
|
62 |
+
|
63 |
+
|
64 |
+
def get_coordinates(ent):
|
65 |
+
request_url = 'https://nominatim.openstreetmap.org/search.php?q= ' +ent +'&polygon_geojson=1&accept-language=en&format=jsonv2'
|
66 |
+
headers = {
|
67 |
+
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/18.3 Safari/605.1.15"
|
68 |
+
}
|
69 |
+
page = requests.get(request_url, headers=headers, verify=False)
|
70 |
+
json_content = json.loads(page.content)
|
71 |
+
all_coordinates = json_content[0]['geojson']['coordinates'][0]
|
72 |
+
centroid = (float(json_content[0]['lon']), float(json_content[0]['lat']))
|
73 |
+
for p in all_coordinates:
|
74 |
+
p2 = (p[0], p[1])
|
75 |
+
angle = geoutil.calculate_bearing(centroid, p2)
|
76 |
+
p.append(angle)
|
77 |
+
|
78 |
+
geojson = get_geojson(ent, all_coordinates, centroid)
|
79 |
+
|
80 |
+
return geojson['features'][0]['geometry']['coordinates'][0], geojson['features'][0]['properties']['centroid']
|
81 |
+
|
82 |
+
def get_coordinates(location):
|
83 |
+
request_url = f'https://nominatim.openstreetmap.org/search.php?q={location}&polygon_geojson=1&accept-language=en&format=jsonv2'
|
84 |
+
|
85 |
+
print(request_url)
|
86 |
+
headers = {"User-Agent": "Mozilla/5.0"}
|
87 |
+
response = requests.get(request_url, headers=headers, verify=False)
|
88 |
+
json_content = json.loads(response.content)
|
89 |
+
# print(json_content)
|
90 |
+
if json_content[0]['geojson']['type'] == 'Polygon':
|
91 |
+
coordinates = json_content[0]['geojson']['coordinates'][0]
|
92 |
+
elif json_content[0]['geojson']['type'] == 'Point':
|
93 |
+
coordinates = json_content[0]['geojson']['coordinates']
|
94 |
+
else:
|
95 |
+
print(json_content[0]['geojson']['type'])
|
96 |
+
centroid = (float(json_content[0]['lon']), float(json_content[0]['lat']))
|
97 |
+
return (coordinates, centroid)
|
98 |
+
|
99 |
+
|
100 |
+
# level3
|
101 |
+
def get_directional_coordinates_by_angle(coordinates, centroid, direction, minimum, maximum):
|
102 |
+
# minimum = 157
|
103 |
+
# maximum = 202
|
104 |
+
|
105 |
+
direction_coordinates = []
|
106 |
+
for p in coordinates:
|
107 |
+
angle = geoutil.calculate_bearing(centroid, p)
|
108 |
+
p2 = (p[0], p[1], angle)
|
109 |
+
if direction in geo_level1.east:
|
110 |
+
if angle >= minimum or angle <= maximum:
|
111 |
+
direction_coordinates.append(p2)
|
112 |
+
|
113 |
+
else:
|
114 |
+
if angle >= minimum and angle <= maximum:
|
115 |
+
direction_coordinates.append(p2)
|
116 |
+
# print(type(direction_coordinates[0]))
|
117 |
+
# if(direction in geo_level1.west):
|
118 |
+
# direction_coordinates.sort(key=lambda k: k[2], reverse=True)
|
119 |
+
|
120 |
+
return direction_coordinates
|
121 |
+
def get_level3(level3):
|
122 |
+
digits = re.findall('[0-9]+', level3)[0]
|
123 |
+
unit = re.findall('[A-Za-z]+', level3)[0]
|
124 |
+
return digits, unit
|
125 |
+
|
126 |
+
def get_direction_coordinates(coordinates, centroid, level1):
|
127 |
+
min_max = geo_level1.get_min_max(level1)
|
128 |
+
if min_max is not None:
|
129 |
+
coord = get_directional_coordinates_by_angle(coordinates, centroid, level1, min_max[0], min_max[1])
|
130 |
+
return coord
|
131 |
+
return coordinates
|
132 |
+
def sort_west(poly1, poly2, centroid):
|
133 |
+
coords1 = mapping(poly1)["features"][0]["geometry"]["coordinates"]
|
134 |
+
coords2 = mapping(poly2)["features"][0]["geometry"]["coordinates"]
|
135 |
+
coord1 = []
|
136 |
+
coord2 = []
|
137 |
+
coord = []
|
138 |
+
for c in coords1:
|
139 |
+
pol = list(c[::-1])
|
140 |
+
coord1.extend(pol)
|
141 |
+
for c in coords2:
|
142 |
+
pol = list(c[::-1])
|
143 |
+
coord2.extend(pol)
|
144 |
+
coo1 = []
|
145 |
+
coo2 = []
|
146 |
+
for p in coord1:
|
147 |
+
angle = geoutil.calculate_bearing(centroid, p)
|
148 |
+
if angle >= 157 and angle <= 202:
|
149 |
+
coo1.append((p[0], p[1], angle))
|
150 |
+
for p in coord2:
|
151 |
+
angle = geoutil.calculate_bearing(centroid, p)
|
152 |
+
if angle >= 157 and angle <= 202:
|
153 |
+
coo2.append((p[0], p[1], angle))
|
154 |
+
coo1.extend(coo2)
|
155 |
+
return coo1
|
156 |
+
|
157 |
+
|
158 |
+
def get_level3_coordinates(coordinates, level_3, level1):
|
159 |
+
distance, unit = get_level3(level_3)
|
160 |
+
kms = geoutil.get_kilometers(distance, unit)
|
161 |
+
coord = []
|
162 |
+
|
163 |
+
coords0, center = coordinates
|
164 |
+
|
165 |
+
if not isinstance(coords0, list) or len(coords0) < 3:
|
166 |
+
|
167 |
+
# 从原始点出发,根据方向移动距离 kms 得到新圆心
|
168 |
+
lat_km = 111.32
|
169 |
+
lon_km = 111.32 * np.cos(np.radians(center[1]))
|
170 |
+
|
171 |
+
dx = dy = 0
|
172 |
+
|
173 |
+
if level1 is not None:
|
174 |
+
if level1 in geo_level1.east:
|
175 |
+
dx = kms / lon_km
|
176 |
+
elif level1 in geo_level1.west:
|
177 |
+
dx = -kms / lon_km
|
178 |
+
elif level1 in geo_level1.north:
|
179 |
+
dy = kms / lat_km
|
180 |
+
elif level1 in geo_level1.south:
|
181 |
+
dy = -kms / lat_km
|
182 |
+
# 你也可以支持 northeast、southwest 等复合方向
|
183 |
+
|
184 |
+
new_center = (center[0] + dx, center[1] + dy)
|
185 |
+
|
186 |
+
# 用固定半径画个圆(例如半径2km)
|
187 |
+
r_km = 1 # 半径设为1km,你也可以设为其他值
|
188 |
+
|
189 |
+
circle_points = []
|
190 |
+
for theta in np.linspace(0, 360, num=100):
|
191 |
+
theta_rad = np.radians(theta)
|
192 |
+
d_lat = (np.sin(theta_rad) * r_km) / lat_km
|
193 |
+
d_lon = (np.cos(theta_rad) * r_km) / lon_km
|
194 |
+
circle_points.append((new_center[0] + d_lon, new_center[1] + d_lat))
|
195 |
+
|
196 |
+
# 输出中心(使用新圆心)
|
197 |
+
if circle_points:
|
198 |
+
center_point = MultiPoint(circle_points).centroid
|
199 |
+
center = (center_point.x, center_point.y)
|
200 |
+
else:
|
201 |
+
center = new_center
|
202 |
+
|
203 |
+
return circle_points, center
|
204 |
+
|
205 |
+
# 正常 polygon 流程
|
206 |
+
poly1 = Polygon(coords0)
|
207 |
+
polygon1 = gpd.GeoSeries(poly1)
|
208 |
+
|
209 |
+
# 生成环形区域
|
210 |
+
poly2 = polygon1.buffer(0.0095 * kms, join_style=2)
|
211 |
+
poly3 = polygon1.buffer(0.013 * kms, join_style=2)
|
212 |
+
poly = poly3.difference(poly2)
|
213 |
+
|
214 |
+
# 获取坐标
|
215 |
+
coords = mapping(poly)["features"][0]["geometry"]["coordinates"]
|
216 |
+
for c in coords:
|
217 |
+
pol = list(c[::-1])
|
218 |
+
coord.extend(pol)
|
219 |
+
|
220 |
+
# 方向裁剪
|
221 |
+
if level1 is not None:
|
222 |
+
coord = get_direction_coordinates(coord, coordinates[1], level1)
|
223 |
+
if level1 in geo_level1.west:
|
224 |
+
coord = sort_west(poly3, poly2, coordinates[1])
|
225 |
+
|
226 |
+
# 计算质心
|
227 |
+
if coord:
|
228 |
+
center_point = MultiPoint(coord).centroid
|
229 |
+
center = (center_point.x, center_point.y)
|
230 |
+
else:
|
231 |
+
center = coordinates[1]
|
232 |
+
|
233 |
+
return coord, center
|
234 |
+
# level 3 end
|
235 |
+
|
236 |
+
# between
|
237 |
+
def get_between_coordinates(coordinates1, coordinates2):
|
238 |
+
"""
|
239 |
+
计算两个区域之间的中间点,并生成一个等面积的圆形区域。
|
240 |
+
如果某个输入仅为点(坐标长度 < 3),则其面积设为 0;
|
241 |
+
如果两个输入都是点,则默认半径为 2km。
|
242 |
+
:param coordinates1: 第一个区域的边界坐标和中心点
|
243 |
+
:param coordinates2: 第二个区域的边界坐标和中心点
|
244 |
+
:return: 圆形区域的坐标集和圆心
|
245 |
+
"""
|
246 |
+
|
247 |
+
def is_valid_polygon(coords):
|
248 |
+
return isinstance(coords, list) and len(coords) >= 3
|
249 |
+
|
250 |
+
coords1, center1 = coordinates1
|
251 |
+
coords2, center2 = coordinates2
|
252 |
+
|
253 |
+
# 判断输入是否为合法多边形(>=3个点)
|
254 |
+
if is_valid_polygon(coords1):
|
255 |
+
poly1 = Polygon(coords1)
|
256 |
+
area1 = poly1.area
|
257 |
+
else:
|
258 |
+
area1 = 0
|
259 |
+
|
260 |
+
if is_valid_polygon(coords2):
|
261 |
+
poly2 = Polygon(coords2)
|
262 |
+
area2 = poly2.area
|
263 |
+
else:
|
264 |
+
area2 = 0
|
265 |
+
|
266 |
+
# 计算中心点(两个中心的中点)
|
267 |
+
midpoint = (
|
268 |
+
(center1[0] + center2[0]) / 2,
|
269 |
+
(center1[1] + center2[1]) / 2
|
270 |
+
)
|
271 |
+
|
272 |
+
# 如果两个区域都是点,则使用默认半径 2km
|
273 |
+
if area1 == 0 and area2 == 0:
|
274 |
+
r_km = 2
|
275 |
+
else:
|
276 |
+
avg_area = (area1 + area2) / 2
|
277 |
+
r_km = np.sqrt(avg_area / np.pi) * 111.32 # 近似 km 半径
|
278 |
+
|
279 |
+
# 经纬度距离换算因子
|
280 |
+
lat_km = 111.32
|
281 |
+
lon_km = 111.32 * np.cos(np.radians(midpoint[1]))
|
282 |
+
|
283 |
+
# 生成圆形区域坐标(100个点)
|
284 |
+
circle_points = []
|
285 |
+
for theta in np.linspace(0, 360, num=100):
|
286 |
+
theta_rad = np.radians(theta)
|
287 |
+
d_lat = (np.sin(theta_rad) * r_km) / lat_km
|
288 |
+
d_lon = (np.cos(theta_rad) * r_km) / lon_km
|
289 |
+
circle_points.append((midpoint[0] + d_lon, midpoint[1] + d_lat))
|
290 |
+
|
291 |
+
return circle_points, midpoint
|
292 |
+
# between end
|
293 |
+
|
294 |
+
|
295 |
+
def llmapi(text):
|
296 |
+
system_prompt = (
|
297 |
+
"你是一个资深的地理学家,你的任务是通过给定的一段自然语言,来选择正确的定位函数顺序以及他们的输入。\n"
|
298 |
+
"你能选择的定位函数有:\n"
|
299 |
+
"1. 相对定位(Relative Positioning):输入为地点坐标,方位,距���。输出为距离‘距离’输入的地点坐标的‘方位’的坐标。\n"
|
300 |
+
"2. 中间定位(Between Positioning):输入为两个地点的坐标,输出为两个地点坐标的中点。\n"
|
301 |
+
"请先进行思维链(CoT)推理,并最终用 JSON 格式输出你的答案,用 `<<<JSON>>>` 和 `<<<END>>>` 包裹起来。\n"
|
302 |
+
"请确保所有输入仅包含:地点名称(字符串)、索引(整数)、方位(字符串,必须是英文)或距离(字符串,带单位),不允许返回诸如 'Chatswood 南4 km的坐标' 这样的内容。\n"
|
303 |
+
"每个步骤编号都有 id 记录,然后如果某个输入是之前步骤的输出,那么输入对应步骤的 id。\n"
|
304 |
+
"所有方向必须使用英文(如 south, west, northeast, etc.)。\n"
|
305 |
+
"示例输出:\n"
|
306 |
+
"<<<JSON>>>\n"
|
307 |
+
"[{\"id\": 1, \"function\": \"Relative\", \"inputs\": [\"Chatswood\", \"south\", \"4 km\"]},"
|
308 |
+
"{\"id\": 2, \"function\": \"Relative\", \"inputs\": [\"North Sydney\", \"west\", \"2 km\"]},"
|
309 |
+
"{\"id\": 3, \"function\": \"Between\", \"inputs\": [1, 2]},"
|
310 |
+
"{\"id\": 4, \"function\": \"Relative\", \"inputs\": [3, \"southwest\", \"5 km\"]}]\n"
|
311 |
+
"<<<END>>>")
|
312 |
+
|
313 |
+
messages = [
|
314 |
+
{"role": "system", "content": system_prompt},
|
315 |
+
{"role": "user", "content": text},
|
316 |
+
]
|
317 |
+
|
318 |
+
chat_completion = client.chat.completions.create(
|
319 |
+
messages=messages,
|
320 |
+
model=model,
|
321 |
+
)
|
322 |
+
|
323 |
+
result = chat_completion.choices[0].message.content
|
324 |
+
json_match = re.search(r'<<<JSON>>>\n(.*?)\n<<<END>>>', result, re.DOTALL)
|
325 |
+
|
326 |
+
if json_match:
|
327 |
+
# print(json.loads(json_match.group(1)))
|
328 |
+
return json.loads(json_match.group(1))
|
329 |
+
else:
|
330 |
+
raise ValueError("LLM 输出未包含预期的 JSON 格式数据。")
|
331 |
+
def llmapi(text):
|
332 |
+
system_prompt = (
|
333 |
+
"You are an experienced geographer. Your task is to determine the correct sequence of positioning functions and their inputs based on a given piece of natural language.\n"
|
334 |
+
"The positioning functions you can choose from are:\n"
|
335 |
+
"1. Relative Positioning: Inputs is (location coordinate or location name, direction, and distance). Outputs the coordinates that are in the given 'direction' and 'distance' from the input location.\n"
|
336 |
+
"2. Between Positioning: Inputs is (location 1 coordinates or location 1 name, location 2 coordinates or location 2 name). Outputs the midpoint coordinate between the two locations.\n"
|
337 |
+
"You can only use the given functions, and the inputs to the functions must obey the above properties. The given functions can be combined to solve complex situations."
|
338 |
+
"First, perform chain-of-thought (CoT) reasoning, and finally output your answer in JSON format, wrapped between `<<<JSON>>>` and `<<<END>>>`.\n"
|
339 |
+
"Make sure all inputs only include: location names (strings), step indices (integers), directions (strings, must be in English), or distances (strings with units). Do not return expressions like 'the coordinate 4 km south of Chatswood'.\n"
|
340 |
+
"Each step must have an 'id'. If the input of a step is the output of a previous step, use that step’s 'id' as the input.\n"
|
341 |
+
"All directions must be in English (e.g., south, west, northeast, etc.).\n"
|
342 |
+
"Example output:\n"
|
343 |
+
"<<<JSON>>>\n"
|
344 |
+
"[{\"id\": 1, \"function\": \"Relative\", \"inputs\": [\"Chatswood\", \"south\", \"4 km\"]},"
|
345 |
+
"{\"id\": 2, \"function\": \"Relative\", \"inputs\": [\"North Sydney\", \"west\", \"2 km\"]},"
|
346 |
+
"{\"id\": 3, \"function\": \"Between\", \"inputs\": [1, 2]},"
|
347 |
+
"{\"id\": 4, \"function\": \"Relative\", \"inputs\": [3, \"southwest\", \"5 km\"]}]\n"
|
348 |
+
"<<<END>>>")
|
349 |
+
|
350 |
+
messages = [
|
351 |
+
{"role": "system", "content": system_prompt},
|
352 |
+
{"role": "user", "content": text},
|
353 |
+
]
|
354 |
+
|
355 |
+
chat_completion = client.chat.completions.create(
|
356 |
+
messages=messages,
|
357 |
+
model=model,
|
358 |
+
)
|
359 |
+
|
360 |
+
result = chat_completion.choices[0].message.content
|
361 |
+
print(result)
|
362 |
+
json_match = re.search(r'<<<JSON>>>\n(.*?)\n<<<END>>>', result, re.DOTALL)
|
363 |
+
|
364 |
+
if json_match:
|
365 |
+
return json.loads(json_match.group(1))
|
366 |
+
else:
|
367 |
+
raise ValueError("LLM 输出未包含预期的 JSON 格式数据。")
|
368 |
+
|
369 |
+
|
370 |
+
|
371 |
+
|
372 |
+
|
373 |
+
def execute_steps(steps):
|
374 |
+
data = {}
|
375 |
+
|
376 |
+
for step in steps:
|
377 |
+
step_id = step['id']
|
378 |
+
function = step['function']
|
379 |
+
inputs = step['inputs']
|
380 |
+
# print('-' * 50)
|
381 |
+
# print(function)
|
382 |
+
# print(inputs)
|
383 |
+
|
384 |
+
|
385 |
+
resolved_inputs = []
|
386 |
+
for inp in inputs:
|
387 |
+
if isinstance(inp, int):
|
388 |
+
resolved_inputs.append(data[inp])
|
389 |
+
else:
|
390 |
+
resolved_inputs.append(inp)
|
391 |
+
if function == "Relative":
|
392 |
+
location, direction, distance = resolved_inputs
|
393 |
+
if isinstance(location, str):
|
394 |
+
location = get_coordinates(location)
|
395 |
+
|
396 |
+
location = [to_standard_2d_list(location[0])] + list(location[1:])
|
397 |
+
location = [[[151.214901,-33.859175]], (151.214901,-33.859175)]
|
398 |
+
result = get_level3_coordinates(location, distance, direction)
|
399 |
+
data[step_id] = result
|
400 |
+
|
401 |
+
elif function == "Between":
|
402 |
+
|
403 |
+
|
404 |
+
location1, location2 = resolved_inputs
|
405 |
+
# print(location1)
|
406 |
+
# print(111)
|
407 |
+
# print(location2)
|
408 |
+
if isinstance(location1, str):
|
409 |
+
location1 = get_coordinates(location1)
|
410 |
+
|
411 |
+
location1 = [to_standard_2d_list(location1[0])] + list(location1[1:])
|
412 |
+
if isinstance(location2, str):
|
413 |
+
|
414 |
+
location2 = get_coordinates(location2)
|
415 |
+
location2 = [to_standard_2d_list(location2[0])] + list(location2[1:])
|
416 |
+
result = get_between_coordinates(location1, location2)
|
417 |
+
|
418 |
+
data[step_id] = result
|
419 |
+
|
420 |
+
return data
|
421 |
+
|
422 |
+
|
423 |
+
def process_api(input_text):
|
424 |
+
# 这里编写实际的后端处理逻辑
|
425 |
+
|
426 |
+
# return {
|
427 |
+
# "status": "success",
|
428 |
+
# # "result": f"Processed: {input_text.upper()}",
|
429 |
+
# "result": f"Processed: {nlp(input_text).to_json()}",
|
430 |
+
# "timestamp": time.time()
|
431 |
+
# }
|
432 |
+
parsed_steps = llmapi(input_text)
|
433 |
+
result = execute_steps(parsed_steps)
|
434 |
+
coords = result[(max(result.keys()))]
|
435 |
+
|
436 |
+
geojson = get_geojson(None, coords[0], coords[1])
|
437 |
+
return geojson
|
438 |
+
|
439 |
+
request_url = 'https://nominatim.openstreetmap.org/search.php?q=Glebe&polygon_geojson=1&accept-language=en&format=jsonv2'
|
440 |
+
headers = {
|
441 |
+
"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/18.3 Safari/605.1.15"
|
442 |
+
}
|
443 |
+
page1 = requests.get(request_url, headers=headers, verify=False)
|
444 |
+
cont = page1.content
|
445 |
+
|
446 |
+
# 设置API格式为JSON
|
447 |
+
gr.Interface(
|
448 |
+
fn=process_api,
|
449 |
+
# fn=cont,
|
450 |
+
inputs="text",
|
451 |
+
outputs="json",
|
452 |
+
title="Backend API",
|
453 |
+
allow_flagging="never"
|
454 |
+
).launch(debug=True)
|
455 |
+
|
456 |
+
|
457 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
geopandas
|
3 |
+
openai
|
4 |
+
quantities
|
5 |
+
shapely
|