Spaces:
Running
Running
import logging | |
from pathlib import Path | |
import json | |
# Configure logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
def generate_visualization(file_path: str, request: str) -> dict: | |
""" | |
Generate visualization code for Excel data using Hugging Face models. | |
Args: | |
file_path (str): Path to the Excel file | |
request (str): Natural language visualization request | |
Returns: | |
dict: Generated code and visualization description | |
""" | |
logger.info(f"Generating visualization for {file_path}: {request}") | |
# Mock implementation - would use actual Hugging Face models in production | |
# Would actually read Excel data and generate real matplotlib/seaborn code | |
# Example mock visualization code | |
mock_code = """ | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
# Read the Excel file | |
df = pd.read_excel('data.xlsx') | |
# Create the visualization | |
plt.figure(figsize=(10, 6)) | |
sns.barplot(data=df, x='Category', y='Values') | |
plt.title('Data Visualization') | |
plt.xlabel('Categories') | |
plt.ylabel('Values') | |
plt.xticks(rotation=45) | |
plt.tight_layout() | |
plt.show() | |
""" | |
return { | |
"code": mock_code, | |
"description": "This code generates a bar plot showing the relationship between categories and their corresponding values from your Excel data.", | |
"note": "This is a mock response. In production, the code would be generated based on actual Excel data analysis and user requirements." | |
} |