File size: 1,576 Bytes
2d26f28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import logging
from pathlib import Path
import json

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def generate_visualization(file_path: str, request: str) -> dict:
    """

    Generate visualization code for Excel data using Hugging Face models.

    

    Args:

        file_path (str): Path to the Excel file

        request (str): Natural language visualization request

        

    Returns:

        dict: Generated code and visualization description

    """
    logger.info(f"Generating visualization for {file_path}: {request}")
    
    # Mock implementation - would use actual Hugging Face models in production
    # Would actually read Excel data and generate real matplotlib/seaborn code
    
    # Example mock visualization code
    mock_code = """

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns



# Read the Excel file

df = pd.read_excel('data.xlsx')



# Create the visualization

plt.figure(figsize=(10, 6))

sns.barplot(data=df, x='Category', y='Values')

plt.title('Data Visualization')

plt.xlabel('Categories')

plt.ylabel('Values')

plt.xticks(rotation=45)

plt.tight_layout()

plt.show()

"""
    
    return {
        "code": mock_code,
        "description": "This code generates a bar plot showing the relationship between categories and their corresponding values from your Excel data.",
        "note": "This is a mock response. In production, the code would be generated based on actual Excel data analysis and user requirements."
    }