SergeyO7's picture
Rename app.py to app2.py
9ffab41 verified
import gradio as gr
from langchain_community.document_loaders import UnstructuredMarkdownLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.documents import Document
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import HuggingFaceHub
from langchain.prompts import ChatPromptTemplate
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool
import smolagents # Added for aliasing
from tools.final_answer import FinalAnswerTool
from dotenv import load_dotenv
import os
import base64
import numpy as np
from datetime import datetime
from skyfield.api import load
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image
from opentelemetry.sdk.trace import TracerProvider
from openinference.instrumentation.smolagents import SmolagentsInstrumentor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
from langfuse import Langfuse
# Load environment variables
load_dotenv()
# Add the alias before instrumentation
smolagents.ApiModel = smolagents.HfApiModel
LANGFUSE_PUBLIC_KEY = "pk-lf-23dd0190-7c1d-4ac9-be62-9aaf1370ef6d"
LF_SECRET_KEY = "sk-lf-f8fe856f-7569-4aec-9a08-dabbac9e83b9"
#langfuse = Langfuse(
# secret_key="sk-lf-f8fe856f-7569-4aec-9a08-dabbac9e83b9",
# public_key="pk-lf-23dd0190-7c1d-4ac9-be62-9aaf1370ef6d",
# host="https://cloud.langfuse.com"
#)
LANGFUSE_AUTH=base64.b64encode(f"{LANGFUSE_PUBLIC_KEY}:{LF_SECRET_KEY}".encode()).decode()
os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = "https://cloud.langfuse.com/api/public/otel" # EU data region
os.environ["OTEL_EXPORTER_OTLP_HEADERS"] = f"Authorization=Basic {LANGFUSE_AUTH}"
trace_provider = TracerProvider()
trace_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter()))
SmolagentsInstrumentor().instrument(tracer_provider=trace_provider)
DATA_PATH = ""
# Specify the path to your file
PROMPT_TEMPLATE = """
Ответь на вопрос, используя только следующий контекст:
{context}
---
Ответь на вопрос на основе приведенного контекста: {question}
"""
# Global variable for status
status_message = "Инициализация..."
# Translation dictionaries
classification_ru = {
'Swallowed': 'проглоченная',
'Tiny': 'сверхмалая',
'Small': 'малая',
'Normal': 'нормальная',
'Ideal': 'идеальная',
'Big': 'большая'
}
planet_ru = {
'Sun': 'Солнце',
'Moon': 'Луна',
'Mercury': 'Меркурий',
'Venus': 'Венера',
'Mars': 'Марс',
'Jupiter': 'Юпитер',
'Saturn': 'Сатурн'
}
planet_symbols = {
'Sun': '☉',
'Moon': '☾',
'Mercury': '☿',
'Venus': '♀',
'Mars': '♂',
'Jupiter': '♃',
'Saturn': '♄'
}
def initialize_vectorstore():
"""Initialize the FAISS vector store for document retrieval."""
global status_message
try:
status_message = "Загрузка и обработка документов..."
documents = load_documents()
chunks = split_text(documents)
status_message = "Создание векторной базы..."
vectorstore = save_to_faiss(chunks)
status_message = "База данных готова к использованию."
return vectorstore
except Exception as e:
status_message = f"Ошибка инициализации: {str(e)}"
raise
def load_documents():
"""Load documents from the specified file path."""
file_path = os.path.join(DATA_PATH, "pl250320252.md")
if not os.path.exists(file_path):
raise FileNotFoundError(f"Файл {file_path} не найден")
loader = UnstructuredMarkdownLoader(file_path)
return loader.load()
def split_text(documents: list[Document]):
"""Split documents into chunks for vectorization."""
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=900,
chunk_overlap=300,
length_function=len,
add_start_index=True,
)
return text_splitter.split_documents(documents)
def save_to_faiss(chunks: list[Document]):
"""Save document chunks to a FAISS vector store."""
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
model_kwargs={'device': 'cpu'},
encode_kwargs={'normalize_embeddings': True}
)
return FAISS.from_documents(chunks, embeddings)
def process_query(query_text: str, vectorstore):
"""Process a query using the RAG system."""
if vectorstore is None:
return "База данных не инициализирована", []
try:
results = vectorstore.similarity_search_with_relevance_scores(query_text, k=3)
global status_message
status_message += f"\nНайдено {len(results)} результатов"
if not results:
return "Не найдено результатов.", []
context_text = "\n\n---\n\n".join([
f"Релевантность: {score:.2f}\n{doc.page_content}"
for doc, score in results
])
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
prompt = prompt_template.format(context=context_text, question=query_text)
model = HuggingFaceEndpoint(
endpoint_url="https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud/",
task="text2text-generation",
# huggingfacehub_api_token=os.getenv("HUGGINGFACEHUB_API_TOKEN"),
model_kwargs={"temperature": 0.5, "max_length": 512}
)
response_text = model.invoke(prompt)
sources = list(set([doc.metadata.get("source", "") for doc, _ in results]))
return response_text, sources
except Exception as e:
return f"Ошибка обработки запроса: {str(e)}", []
# Function to parse date and time into ISO format
def parse_date_time(date_time_str):
try:
dt = parser.parse(date_time_str)
return dt.isoformat()
except ValueError:
return None
# Function to convert longitude to zodiac sign and degrees
def lon_to_sign(lon):
signs = ["Овен", "Телец", "Близнецы", "Рак", "Лев", "Дева",
"Весы", "Скорпион", "Стрелец", "Козерог", "Водолей", "Рыбы"]
sign_index = int(lon // 30)
sign = signs[sign_index]
degrees = int(lon % 30)
minutes = int((lon % 1) * 60)
return f"{sign} {degrees}°{minutes}'"
# Function to calculate PLadder and zone sizes
def PLadder_ZSizes(date_time_iso: str):
"""
Calculate the planetary ladder and zone sizes for a given date and time.
Args:
date_time_iso (str): Date and time in ISO format (e.g., '2023-10-10T12:00:00')
Returns:
dict: Contains 'PLadder' (list of planets) and 'ZSizes' (list of zone sizes with classifications)
or an error message if unsuccessful
"""
try:
dt = datetime.fromisoformat(date_time_iso)
if dt.year < 1900 or dt.year > 2050:
return {"error": "Дата вне диапазона. Должна быть между 1900 и 2050 годами."}
# Load ephemeris
planets = load('de421.bsp')
earth = planets['earth']
# Define planet objects
planet_objects = {
'Sun': planets['sun'],
'Moon': planets['moon'],
'Mercury': planets['mercury'],
'Venus': planets['venus'],
'Mars': planets['mars'],
'Jupiter': planets['jupiter barycenter'],
'Saturn': planets['saturn barycenter']
}
# Create time object
ts = load.timescale()
t = ts.utc(dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second)
# Compute ecliptic longitudes
longitudes = {}
for planet in planet_objects:
apparent = earth.at(t).observe(planet_objects[planet]).apparent()
_, lon, _ = apparent.ecliptic_latlon()
longitudes[planet] = lon.degrees
# Sort planets by longitude to form PLadder
sorted_planets = sorted(longitudes.items(), key=lambda x: x[1])
PLadder = [p for p, _ in sorted_planets]
sorted_lons = [lon for _, lon in sorted_planets]
# Calculate zone sizes
zone_sizes = [sorted_lons[0]] + [sorted_lons[i+1] - sorted_lons[i] for i in range(6)] + [360 - sorted_lons[6]]
# Determine bordering planets for classification
bordering = [[PLadder[0]]] + [[PLadder[i-1], PLadder[i]] for i in range(1, 7)] + [[PLadder[6]]]
# Classify each zone
ZSizes = []
for i, size in enumerate(zone_sizes):
bord = bordering[i]
if any(p in ['Sun', 'Moon'] for p in bord):
X = 7
elif any(p in ['Mercury', 'Venus', 'Mars'] for p in bord):
X = 6
else:
X = 5
if size <= 1:
classification = 'Swallowed'
elif size <= X:
classification = 'Tiny'
elif size <= 40:
classification = 'Small'
elif size < 60:
if 50 <= size <= 52:
classification = 'Ideal'
else:
classification = 'Normal'
else:
classification = 'Big'
# Convert size to degrees and minutes
d = int(size)
m = int((size - d) * 60)
size_str = f"{d}°{m}'"
ZSizes.append((size_str, classification))
return {'PLadder': PLadder, 'ZSizes': ZSizes}
except ValueError:
return {"error": "Неверный формат даты и времени. Используйте ISO формат, например, '2023-10-10T12:00:00'"}
except Exception as e:
return {"error": f"Ошибка при вычислении: {str(e)}"}
def plot_pladder(PLadder):
"""
Plot the planetary ladder as a right triangle with planet symbols.
Args:
PLadder (list): List of planet names in order
Returns:
matplotlib.figure.Figure: The generated plot
"""
fig, ax = plt.subplots()
# Plot triangle with right angle on top: vertices at (0,0), (1.5,3), (3,0)
ax.plot([0, 1.5, 3, 0], [0, 3, 0, 0], 'k-')
# Draw horizontal lines dividing height into three equal parts
ax.plot([0, 3], [1, 1], 'k--')
ax.plot([0, 3], [2, 2], 'k--')
# Define positions for planets 1 to 7, adjusted to avoid overlap
positions = [(0.2, 0.2), (0.2, 1.2), (0.2, 2.2), (1.5, 3.2), (2.8, 2.2), (2.8, 1.2), (2.8, 0.2)]
for i, pos in enumerate(positions):
symbol = planet_symbols[PLadder[i]]
ax.text(pos[0], pos[1], symbol, ha='center', va='center', fontsize=24) # Doubled font size
ax.set_xlim(-0.5, 3.5)
ax.set_ylim(-0.5, 3.5)
ax.set_aspect('equal')
ax.axis('off')
return fig
def chat_interface(query_text):
"""
Handle user queries, either for planetary ladder or general RAG questions.
Args:
query_text (str): User's input query
Returns:
tuple: (text response, plot figure or None)
"""
global status_message
try:
vectorstore = initialize_vectorstore()
if query_text.startswith("PLadder "):
# Extract date and time from query
date_time_iso = query_text.split(" ", 1)[1]
result = PLadder_ZSizes(date_time_iso)
if "error" in result:
return result["error"], None
PLadder = result["PLadder"]
ZSizes = result["ZSizes"]
# Translate to Russian
PLadder_ru = [planet_ru[p] for p in PLadder]
ZSizes_ru = [(size_str, classification_ru[classification]) for size_str, classification in ZSizes]
# Prepare queries and get responses
responses = []
for i in range(7):
planet = PLadder_ru[i]
size_str, class_ru = ZSizes_ru[i]
query = f"Что значит {planet} на {i+1}-й ступени и {size_str} {class_ru} {i+1}-я зона?"
response, _ = process_query(query, vectorstore)
responses.append(f"Интерпретация для {i+1}-й ступени и {i+1}-й зоны: {response}")
# Query for 8th zone
size_str, class_ru = ZSizes_ru[7]
query = f"Что значит {size_str} {class_ru} восьмая зона?"
response, _ = process_query(query, vectorstore)
responses.append(f"Интерпретация для 8-й зоны: {response}")
# Generate plot
fig = plot_pladder(PLadder)
buf = BytesIO()
fig.savefig(buf, format='png') # Save figure to buffer as PNG
buf.seek(0)
img = Image.open(buf) # Convert to PIL image
plt.close(fig) # Close the figure to free memory
# Compile response text
text = "Планетарная лестница: " + ", ".join(PLadder_ru) + "\n"
text += "Размеры зон:\n" + "\n".join([f"Зона {i+1}: {size_str} {class_ru}"
for i, (size_str, class_ru) in enumerate(ZSizes_ru)]) + "\n\n"
text += "\n".join(responses)
return text, img
else:
# Handle regular RAG query
response, sources = process_query(query_text, vectorstore)
full_response = f"{status_message}\n\nОтвет: {response}\n\nИсточники: {', '.join(sources) if sources else 'Нет источников'}"
return full_response, None
except Exception as e:
return f"Критическая ошибка: {str(e)}", None
# Define Gradio Interface
#interface = gr.Interface(
# fn=chat_interface,
# inputs=gr.Textbox(lines=2, placeholder="Введите ваш вопрос здесь..."),
# outputs=[gr.Textbox(), gr.Image()],
# title="Чат с документами",
# description="Задайте вопрос, и я отвечу на основе книги Павла Глобы Планетарная Лестница. "
# "Для быстрого запроса трактовки планетарной лестницы используйте формат: PLadder DD-MM-YYYY HH:MM:SS место"
#)
# UI layout with Gradio Blocks
with gr.Blocks() as interface:
with gr.Row():
with gr.Column(scale=2):
output_text = gr.Textbox(label="Response", lines=10)
with gr.Column(scale=1):
output_image = gr.Image(label="Planetary Ladder Plot")
with gr.Row():
query_text = gr.Textbox(label="Query", placeholder="e.g., PLadder 2023-10-10 12:00")
location_lat = gr.Textbox(label="Latitude", placeholder="e.g., 37.7749")
location_lon = gr.Textbox(label="Longitude", placeholder="e.g., -122.4194")
query_text.submit(chat_interface,
inputs=[query_text, location_lat, location_lon],
outputs=[output_text, output_image])
if __name__ == "__main__":
interface.launch()