Spaces:
Sleeping
Sleeping
File size: 15,842 Bytes
b381fdf d3faf56 b381fdf 1d4a00b 2147a47 d6c82c4 b381fdf 0571c9d ec2356e d3faf56 bfe504a ec2356e 6509f43 b381fdf d3faf56 2147a47 b381fdf ec2356e 9dbc3d9 e3887de 9dbc3d9 ec2356e 6509f43 b381fdf d3faf56 e3887de b381fdf d3faf56 b381fdf d3faf56 b381fdf d3faf56 b381fdf d3faf56 b381fdf d3faf56 b381fdf d3faf56 b381fdf bfe504a d3faf56 bfe504a b381fdf bfe504a b381fdf ec2356e d3faf56 ec2356e d3faf56 ec2356e d3faf56 ec2356e d3faf56 ec2356e b381fdf d3faf56 b381fdf d3faf56 bfe504a d3faf56 bfe504a d3faf56 b381fdf d3faf56 b381fdf d6c82c4 d3faf56 d62107e ec2356e d62107e b381fdf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
import gradio as gr
from langchain_community.document_loaders import UnstructuredMarkdownLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_core.documents import Document
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.llms import HuggingFaceHub
from langchain.prompts import ChatPromptTemplate
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool
import smolagents # Added for aliasing
from tools.final_answer import FinalAnswerTool
from dotenv import load_dotenv
import os
import base64
import numpy as np
from datetime import datetime
from skyfield.api import load
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image
from opentelemetry.sdk.trace import TracerProvider
from openinference.instrumentation.smolagents import SmolagentsInstrumentor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
from langfuse import Langfuse
# Load environment variables
load_dotenv()
# Add the alias before instrumentation
smolagents.ApiModel = smolagents.HfApiModel
LANGFUSE_PUBLIC_KEY = "pk-lf-23dd0190-7c1d-4ac9-be62-9aaf1370ef6d"
LF_SECRET_KEY = "sk-lf-f8fe856f-7569-4aec-9a08-dabbac9e83b9"
#langfuse = Langfuse(
# secret_key="sk-lf-f8fe856f-7569-4aec-9a08-dabbac9e83b9",
# public_key="pk-lf-23dd0190-7c1d-4ac9-be62-9aaf1370ef6d",
# host="https://cloud.langfuse.com"
#)
LANGFUSE_AUTH=base64.b64encode(f"{LANGFUSE_PUBLIC_KEY}:{LF_SECRET_KEY}".encode()).decode()
os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = "https://cloud.langfuse.com/api/public/otel" # EU data region
os.environ["OTEL_EXPORTER_OTLP_HEADERS"] = f"Authorization=Basic {LANGFUSE_AUTH}"
trace_provider = TracerProvider()
trace_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter()))
SmolagentsInstrumentor().instrument(tracer_provider=trace_provider)
DATA_PATH = ""
# Specify the path to your file
PROMPT_TEMPLATE = """
Ответь на вопрос, используя только следующий контекст:
{context}
---
Ответь на вопрос на основе приведенного контекста: {question}
"""
# Global variable for status
status_message = "Инициализация..."
# Translation dictionaries
classification_ru = {
'Swallowed': 'проглоченная',
'Tiny': 'сверхмалая',
'Small': 'малая',
'Normal': 'нормальная',
'Ideal': 'идеальная',
'Big': 'большая'
}
planet_ru = {
'Sun': 'Солнце',
'Moon': 'Луна',
'Mercury': 'Меркурий',
'Venus': 'Венера',
'Mars': 'Марс',
'Jupiter': 'Юпитер',
'Saturn': 'Сатурн'
}
planet_symbols = {
'Sun': '☉',
'Moon': '☾',
'Mercury': '☿',
'Venus': '♀',
'Mars': '♂',
'Jupiter': '♃',
'Saturn': '♄'
}
def initialize_vectorstore():
"""Initialize the FAISS vector store for document retrieval."""
global status_message
try:
status_message = "Загрузка и обработка документов..."
documents = load_documents()
chunks = split_text(documents)
status_message = "Создание векторной базы..."
vectorstore = save_to_faiss(chunks)
status_message = "База данных готова к использованию."
return vectorstore
except Exception as e:
status_message = f"Ошибка инициализации: {str(e)}"
raise
def load_documents():
"""Load documents from the specified file path."""
file_path = os.path.join(DATA_PATH, "pl250320252.md")
if not os.path.exists(file_path):
raise FileNotFoundError(f"Файл {file_path} не найден")
loader = UnstructuredMarkdownLoader(file_path)
return loader.load()
def split_text(documents: list[Document]):
"""Split documents into chunks for vectorization."""
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=900,
chunk_overlap=300,
length_function=len,
add_start_index=True,
)
return text_splitter.split_documents(documents)
def save_to_faiss(chunks: list[Document]):
"""Save document chunks to a FAISS vector store."""
embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
model_kwargs={'device': 'cpu'},
encode_kwargs={'normalize_embeddings': True}
)
return FAISS.from_documents(chunks, embeddings)
def process_query(query_text: str, vectorstore):
"""Process a query using the RAG system."""
if vectorstore is None:
return "База данных не инициализирована", []
try:
results = vectorstore.similarity_search_with_relevance_scores(query_text, k=3)
global status_message
status_message += f"\nНайдено {len(results)} результатов"
if not results:
return "Не найдено результатов.", []
context_text = "\n\n---\n\n".join([
f"Релевантность: {score:.2f}\n{doc.page_content}"
for doc, score in results
])
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE)
prompt = prompt_template.format(context=context_text, question=query_text)
model = HuggingFaceEndpoint(
endpoint_url="https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud/",
task="text2text-generation",
# huggingfacehub_api_token=os.getenv("HUGGINGFACEHUB_API_TOKEN"),
model_kwargs={"temperature": 0.5, "max_length": 512}
)
response_text = model.invoke(prompt)
sources = list(set([doc.metadata.get("source", "") for doc, _ in results]))
return response_text, sources
except Exception as e:
return f"Ошибка обработки запроса: {str(e)}", []
# Function to parse date and time into ISO format
def parse_date_time(date_time_str):
try:
dt = parser.parse(date_time_str)
return dt.isoformat()
except ValueError:
return None
# Function to convert longitude to zodiac sign and degrees
def lon_to_sign(lon):
signs = ["Овен", "Телец", "Близнецы", "Рак", "Лев", "Дева",
"Весы", "Скорпион", "Стрелец", "Козерог", "Водолей", "Рыбы"]
sign_index = int(lon // 30)
sign = signs[sign_index]
degrees = int(lon % 30)
minutes = int((lon % 1) * 60)
return f"{sign} {degrees}°{minutes}'"
# Function to calculate PLadder and zone sizes
def PLadder_ZSizes(date_time_iso: str):
"""
Calculate the planetary ladder and zone sizes for a given date and time.
Args:
date_time_iso (str): Date and time in ISO format (e.g., '2023-10-10T12:00:00')
Returns:
dict: Contains 'PLadder' (list of planets) and 'ZSizes' (list of zone sizes with classifications)
or an error message if unsuccessful
"""
try:
dt = datetime.fromisoformat(date_time_iso)
if dt.year < 1900 or dt.year > 2050:
return {"error": "Дата вне диапазона. Должна быть между 1900 и 2050 годами."}
# Load ephemeris
planets = load('de421.bsp')
earth = planets['earth']
# Define planet objects
planet_objects = {
'Sun': planets['sun'],
'Moon': planets['moon'],
'Mercury': planets['mercury'],
'Venus': planets['venus'],
'Mars': planets['mars'],
'Jupiter': planets['jupiter barycenter'],
'Saturn': planets['saturn barycenter']
}
# Create time object
ts = load.timescale()
t = ts.utc(dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second)
# Compute ecliptic longitudes
longitudes = {}
for planet in planet_objects:
apparent = earth.at(t).observe(planet_objects[planet]).apparent()
_, lon, _ = apparent.ecliptic_latlon()
longitudes[planet] = lon.degrees
# Sort planets by longitude to form PLadder
sorted_planets = sorted(longitudes.items(), key=lambda x: x[1])
PLadder = [p for p, _ in sorted_planets]
sorted_lons = [lon for _, lon in sorted_planets]
# Calculate zone sizes
zone_sizes = [sorted_lons[0]] + [sorted_lons[i+1] - sorted_lons[i] for i in range(6)] + [360 - sorted_lons[6]]
# Determine bordering planets for classification
bordering = [[PLadder[0]]] + [[PLadder[i-1], PLadder[i]] for i in range(1, 7)] + [[PLadder[6]]]
# Classify each zone
ZSizes = []
for i, size in enumerate(zone_sizes):
bord = bordering[i]
if any(p in ['Sun', 'Moon'] for p in bord):
X = 7
elif any(p in ['Mercury', 'Venus', 'Mars'] for p in bord):
X = 6
else:
X = 5
if size <= 1:
classification = 'Swallowed'
elif size <= X:
classification = 'Tiny'
elif size <= 40:
classification = 'Small'
elif size < 60:
if 50 <= size <= 52:
classification = 'Ideal'
else:
classification = 'Normal'
else:
classification = 'Big'
# Convert size to degrees and minutes
d = int(size)
m = int((size - d) * 60)
size_str = f"{d}°{m}'"
ZSizes.append((size_str, classification))
return {'PLadder': PLadder, 'ZSizes': ZSizes}
except ValueError:
return {"error": "Неверный формат даты и времени. Используйте ISO формат, например, '2023-10-10T12:00:00'"}
except Exception as e:
return {"error": f"Ошибка при вычислении: {str(e)}"}
def plot_pladder(PLadder):
"""
Plot the planetary ladder as a right triangle with planet symbols.
Args:
PLadder (list): List of planet names in order
Returns:
matplotlib.figure.Figure: The generated plot
"""
fig, ax = plt.subplots()
# Plot triangle with right angle on top: vertices at (0,0), (1.5,3), (3,0)
ax.plot([0, 1.5, 3, 0], [0, 3, 0, 0], 'k-')
# Draw horizontal lines dividing height into three equal parts
ax.plot([0, 3], [1, 1], 'k--')
ax.plot([0, 3], [2, 2], 'k--')
# Define positions for planets 1 to 7, adjusted to avoid overlap
positions = [(0.2, 0.2), (0.2, 1.2), (0.2, 2.2), (1.5, 3.2), (2.8, 2.2), (2.8, 1.2), (2.8, 0.2)]
for i, pos in enumerate(positions):
symbol = planet_symbols[PLadder[i]]
ax.text(pos[0], pos[1], symbol, ha='center', va='center', fontsize=24) # Doubled font size
ax.set_xlim(-0.5, 3.5)
ax.set_ylim(-0.5, 3.5)
ax.set_aspect('equal')
ax.axis('off')
return fig
def chat_interface(query_text):
"""
Handle user queries, either for planetary ladder or general RAG questions.
Args:
query_text (str): User's input query
Returns:
tuple: (text response, plot figure or None)
"""
global status_message
try:
vectorstore = initialize_vectorstore()
if query_text.startswith("PLadder "):
# Extract date and time from query
date_time_iso = query_text.split(" ", 1)[1]
result = PLadder_ZSizes(date_time_iso)
if "error" in result:
return result["error"], None
PLadder = result["PLadder"]
ZSizes = result["ZSizes"]
# Translate to Russian
PLadder_ru = [planet_ru[p] for p in PLadder]
ZSizes_ru = [(size_str, classification_ru[classification]) for size_str, classification in ZSizes]
# Prepare queries and get responses
responses = []
for i in range(7):
planet = PLadder_ru[i]
size_str, class_ru = ZSizes_ru[i]
query = f"Что значит {planet} на {i+1}-й ступени и {size_str} {class_ru} {i+1}-я зона?"
response, _ = process_query(query, vectorstore)
responses.append(f"Интерпретация для {i+1}-й ступени и {i+1}-й зоны: {response}")
# Query for 8th zone
size_str, class_ru = ZSizes_ru[7]
query = f"Что значит {size_str} {class_ru} восьмая зона?"
response, _ = process_query(query, vectorstore)
responses.append(f"Интерпретация для 8-й зоны: {response}")
# Generate plot
fig = plot_pladder(PLadder)
buf = BytesIO()
fig.savefig(buf, format='png') # Save figure to buffer as PNG
buf.seek(0)
img = Image.open(buf) # Convert to PIL image
plt.close(fig) # Close the figure to free memory
# Compile response text
text = "Планетарная лестница: " + ", ".join(PLadder_ru) + "\n"
text += "Размеры зон:\n" + "\n".join([f"Зона {i+1}: {size_str} {class_ru}"
for i, (size_str, class_ru) in enumerate(ZSizes_ru)]) + "\n\n"
text += "\n".join(responses)
return text, img
else:
# Handle regular RAG query
response, sources = process_query(query_text, vectorstore)
full_response = f"{status_message}\n\nОтвет: {response}\n\nИсточники: {', '.join(sources) if sources else 'Нет источников'}"
return full_response, None
except Exception as e:
return f"Критическая ошибка: {str(e)}", None
# Define Gradio Interface
#interface = gr.Interface(
# fn=chat_interface,
# inputs=gr.Textbox(lines=2, placeholder="Введите ваш вопрос здесь..."),
# outputs=[gr.Textbox(), gr.Image()],
# title="Чат с документами",
# description="Задайте вопрос, и я отвечу на основе книги Павла Глобы Планетарная Лестница. "
# "Для быстрого запроса трактовки планетарной лестницы используйте формат: PLadder DD-MM-YYYY HH:MM:SS место"
#)
# UI layout with Gradio Blocks
with gr.Blocks() as interface:
with gr.Row():
with gr.Column(scale=2):
output_text = gr.Textbox(label="Response", lines=10)
with gr.Column(scale=1):
output_image = gr.Image(label="Planetary Ladder Plot")
with gr.Row():
query_text = gr.Textbox(label="Query", placeholder="e.g., PLadder 2023-10-10 12:00")
location_lat = gr.Textbox(label="Latitude", placeholder="e.g., 37.7749")
location_lon = gr.Textbox(label="Longitude", placeholder="e.g., -122.4194")
query_text.submit(chat_interface,
inputs=[query_text, location_lat, location_lon],
outputs=[output_text, output_image])
if __name__ == "__main__":
interface.launch() |