Spaces:
Sleeping
Sleeping
Rivalcoder
commited on
Commit
·
05ffad0
1
Parent(s):
3757f34
Add files
Browse files
app.py
CHANGED
@@ -14,7 +14,7 @@ model = RobertaForSequenceClassification.from_pretrained(model_name)
|
|
14 |
emotion_analysis = pipeline("text-classification",
|
15 |
model=model,
|
16 |
tokenizer=tokenizer,
|
17 |
-
|
18 |
|
19 |
app = FastAPI()
|
20 |
|
@@ -25,7 +25,7 @@ def save_upload_file(upload_file: UploadFile) -> str:
|
|
25 |
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
|
26 |
content = upload_file.file.read()
|
27 |
if suffix == '.json':
|
28 |
-
content = content.decode('utf-8')
|
29 |
tmp.write(content if isinstance(content, bytes) else content.encode())
|
30 |
return tmp.name
|
31 |
finally:
|
@@ -60,12 +60,10 @@ async def predict_from_upload(file: UploadFile = File(...)):
|
|
60 |
os.unlink(temp_path)
|
61 |
raise HTTPException(status_code=500, detail=str(e))
|
62 |
|
63 |
-
# Modified gradio_predict to handle both input types correctly
|
64 |
def gradio_predict(input_data, file_data=None):
|
65 |
"""Handle both direct text and file uploads"""
|
66 |
try:
|
67 |
-
|
68 |
-
if file_data is not None: # File upload takes precedence
|
69 |
temp_path = save_upload_file(file_data)
|
70 |
if temp_path.endswith('.json'):
|
71 |
with open(temp_path, 'r') as f:
|
@@ -75,7 +73,7 @@ def gradio_predict(input_data, file_data=None):
|
|
75 |
with open(temp_path, 'r') as f:
|
76 |
text = f.read()
|
77 |
os.unlink(temp_path)
|
78 |
-
else:
|
79 |
text = input_data
|
80 |
|
81 |
if not text.strip():
|
@@ -92,7 +90,7 @@ def gradio_predict(input_data, file_data=None):
|
|
92 |
except Exception as e:
|
93 |
return {"error": str(e)}
|
94 |
|
95 |
-
#
|
96 |
with gr.Blocks() as demo:
|
97 |
gr.Markdown("# Text Emotion Analysis")
|
98 |
|
@@ -105,30 +103,12 @@ with gr.Blocks() as demo:
|
|
105 |
with gr.Column():
|
106 |
output = gr.JSON(label="Results")
|
107 |
|
108 |
-
# Handle both input methods
|
109 |
submit_btn.click(
|
110 |
fn=gradio_predict,
|
111 |
inputs=[text_input, file_input],
|
112 |
outputs=output,
|
113 |
api_name="predict"
|
114 |
)
|
115 |
-
|
116 |
-
# Examples with both input types
|
117 |
-
gr.Examples(
|
118 |
-
examples=[
|
119 |
-
["I'm feeling excited about this new project!"],
|
120 |
-
["This situation makes me anxious and worried"]
|
121 |
-
],
|
122 |
-
inputs=text_input
|
123 |
-
)
|
124 |
-
gr.Examples(
|
125 |
-
examples=[
|
126 |
-
["example1.json"],
|
127 |
-
["example2.txt"]
|
128 |
-
],
|
129 |
-
inputs=file_input,
|
130 |
-
label="File Examples"
|
131 |
-
)
|
132 |
|
133 |
app = gr.mount_gradio_app(app, demo, path="/")
|
134 |
|
|
|
14 |
emotion_analysis = pipeline("text-classification",
|
15 |
model=model,
|
16 |
tokenizer=tokenizer,
|
17 |
+
top_k=None) # Replaced return_all_scores with top_k
|
18 |
|
19 |
app = FastAPI()
|
20 |
|
|
|
25 |
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
|
26 |
content = upload_file.file.read()
|
27 |
if suffix == '.json':
|
28 |
+
content = content.decode('utf-8')
|
29 |
tmp.write(content if isinstance(content, bytes) else content.encode())
|
30 |
return tmp.name
|
31 |
finally:
|
|
|
60 |
os.unlink(temp_path)
|
61 |
raise HTTPException(status_code=500, detail=str(e))
|
62 |
|
|
|
63 |
def gradio_predict(input_data, file_data=None):
|
64 |
"""Handle both direct text and file uploads"""
|
65 |
try:
|
66 |
+
if file_data is not None:
|
|
|
67 |
temp_path = save_upload_file(file_data)
|
68 |
if temp_path.endswith('.json'):
|
69 |
with open(temp_path, 'r') as f:
|
|
|
73 |
with open(temp_path, 'r') as f:
|
74 |
text = f.read()
|
75 |
os.unlink(temp_path)
|
76 |
+
else:
|
77 |
text = input_data
|
78 |
|
79 |
if not text.strip():
|
|
|
90 |
except Exception as e:
|
91 |
return {"error": str(e)}
|
92 |
|
93 |
+
# Simplified Gradio interface without examples
|
94 |
with gr.Blocks() as demo:
|
95 |
gr.Markdown("# Text Emotion Analysis")
|
96 |
|
|
|
103 |
with gr.Column():
|
104 |
output = gr.JSON(label="Results")
|
105 |
|
|
|
106 |
submit_btn.click(
|
107 |
fn=gradio_predict,
|
108 |
inputs=[text_input, file_input],
|
109 |
outputs=output,
|
110 |
api_name="predict"
|
111 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
app = gr.mount_gradio_app(app, demo, path="/")
|
114 |
|