Spaces:
Sleeping
Sleeping
Rivalcoder
commited on
Commit
·
3757f34
1
Parent(s):
bda5a7d
Add files
Browse files
app.py
CHANGED
@@ -16,7 +16,6 @@ emotion_analysis = pipeline("text-classification",
|
|
16 |
tokenizer=tokenizer,
|
17 |
return_all_scores=True)
|
18 |
|
19 |
-
# Create FastAPI app
|
20 |
app = FastAPI()
|
21 |
|
22 |
def save_upload_file(upload_file: UploadFile) -> str:
|
@@ -36,47 +35,38 @@ def save_upload_file(upload_file: UploadFile) -> str:
|
|
36 |
async def predict_from_upload(file: UploadFile = File(...)):
|
37 |
"""API endpoint for file uploads"""
|
38 |
try:
|
39 |
-
# Save the uploaded file temporarily
|
40 |
temp_path = save_upload_file(file)
|
41 |
|
42 |
-
# Process based on file type
|
43 |
if temp_path.endswith('.json'):
|
44 |
with open(temp_path, 'r') as f:
|
45 |
data = json.load(f)
|
46 |
text = data.get('description', '')
|
47 |
-
else:
|
48 |
with open(temp_path, 'r') as f:
|
49 |
text = f.read()
|
50 |
|
51 |
if not text.strip():
|
52 |
raise HTTPException(status_code=400, detail="No text content found")
|
53 |
|
54 |
-
# Analyze text
|
55 |
result = emotion_analysis(text)
|
56 |
emotions = [{'label': e['label'], 'score': float(e['score'])}
|
57 |
for e in sorted(result[0], key=lambda x: x['score'], reverse=True)]
|
58 |
|
59 |
-
# Clean up
|
60 |
os.unlink(temp_path)
|
61 |
-
|
62 |
-
return {
|
63 |
-
"success": True,
|
64 |
-
"results": emotions
|
65 |
-
}
|
66 |
|
67 |
except Exception as e:
|
68 |
if 'temp_path' in locals() and os.path.exists(temp_path):
|
69 |
os.unlink(temp_path)
|
70 |
raise HTTPException(status_code=500, detail=str(e))
|
71 |
|
72 |
-
#
|
73 |
-
def gradio_predict(input_data):
|
74 |
"""Handle both direct text and file uploads"""
|
75 |
try:
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
temp_path = save_upload_file(input_data)
|
80 |
if temp_path.endswith('.json'):
|
81 |
with open(temp_path, 'r') as f:
|
82 |
data = json.load(f)
|
@@ -85,6 +75,8 @@ def gradio_predict(input_data):
|
|
85 |
with open(temp_path, 'r') as f:
|
86 |
text = f.read()
|
87 |
os.unlink(temp_path)
|
|
|
|
|
88 |
|
89 |
if not text.strip():
|
90 |
return {"error": "No text content found"}
|
@@ -100,26 +92,46 @@ def gradio_predict(input_data):
|
|
100 |
except Exception as e:
|
101 |
return {"error": str(e)}
|
102 |
|
103 |
-
#
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
gr.
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
-
# Mount Gradio app
|
120 |
app = gr.mount_gradio_app(app, demo, path="/")
|
121 |
|
122 |
-
# For running locally
|
123 |
if __name__ == "__main__":
|
124 |
import uvicorn
|
125 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
16 |
tokenizer=tokenizer,
|
17 |
return_all_scores=True)
|
18 |
|
|
|
19 |
app = FastAPI()
|
20 |
|
21 |
def save_upload_file(upload_file: UploadFile) -> str:
|
|
|
35 |
async def predict_from_upload(file: UploadFile = File(...)):
|
36 |
"""API endpoint for file uploads"""
|
37 |
try:
|
|
|
38 |
temp_path = save_upload_file(file)
|
39 |
|
|
|
40 |
if temp_path.endswith('.json'):
|
41 |
with open(temp_path, 'r') as f:
|
42 |
data = json.load(f)
|
43 |
text = data.get('description', '')
|
44 |
+
else:
|
45 |
with open(temp_path, 'r') as f:
|
46 |
text = f.read()
|
47 |
|
48 |
if not text.strip():
|
49 |
raise HTTPException(status_code=400, detail="No text content found")
|
50 |
|
|
|
51 |
result = emotion_analysis(text)
|
52 |
emotions = [{'label': e['label'], 'score': float(e['score'])}
|
53 |
for e in sorted(result[0], key=lambda x: x['score'], reverse=True)]
|
54 |
|
|
|
55 |
os.unlink(temp_path)
|
56 |
+
return {"success": True, "results": emotions}
|
|
|
|
|
|
|
|
|
57 |
|
58 |
except Exception as e:
|
59 |
if 'temp_path' in locals() and os.path.exists(temp_path):
|
60 |
os.unlink(temp_path)
|
61 |
raise HTTPException(status_code=500, detail=str(e))
|
62 |
|
63 |
+
# Modified gradio_predict to handle both input types correctly
|
64 |
+
def gradio_predict(input_data, file_data=None):
|
65 |
"""Handle both direct text and file uploads"""
|
66 |
try:
|
67 |
+
# Determine input source
|
68 |
+
if file_data is not None: # File upload takes precedence
|
69 |
+
temp_path = save_upload_file(file_data)
|
|
|
70 |
if temp_path.endswith('.json'):
|
71 |
with open(temp_path, 'r') as f:
|
72 |
data = json.load(f)
|
|
|
75 |
with open(temp_path, 'r') as f:
|
76 |
text = f.read()
|
77 |
os.unlink(temp_path)
|
78 |
+
else: # Use direct text input
|
79 |
+
text = input_data
|
80 |
|
81 |
if not text.strip():
|
82 |
return {"error": "No text content found"}
|
|
|
92 |
except Exception as e:
|
93 |
return {"error": str(e)}
|
94 |
|
95 |
+
# Updated Gradio interface with proper input handling
|
96 |
+
with gr.Blocks() as demo:
|
97 |
+
gr.Markdown("# Text Emotion Analysis")
|
98 |
+
|
99 |
+
with gr.Row():
|
100 |
+
with gr.Column():
|
101 |
+
text_input = gr.Textbox(label="Enter text directly", lines=5)
|
102 |
+
file_input = gr.File(label="Or upload file", file_types=[".txt", ".json"])
|
103 |
+
submit_btn = gr.Button("Analyze")
|
104 |
+
|
105 |
+
with gr.Column():
|
106 |
+
output = gr.JSON(label="Results")
|
107 |
+
|
108 |
+
# Handle both input methods
|
109 |
+
submit_btn.click(
|
110 |
+
fn=gradio_predict,
|
111 |
+
inputs=[text_input, file_input],
|
112 |
+
outputs=output,
|
113 |
+
api_name="predict"
|
114 |
+
)
|
115 |
+
|
116 |
+
# Examples with both input types
|
117 |
+
gr.Examples(
|
118 |
+
examples=[
|
119 |
+
["I'm feeling excited about this new project!"],
|
120 |
+
["This situation makes me anxious and worried"]
|
121 |
+
],
|
122 |
+
inputs=text_input
|
123 |
+
)
|
124 |
+
gr.Examples(
|
125 |
+
examples=[
|
126 |
+
["example1.json"],
|
127 |
+
["example2.txt"]
|
128 |
+
],
|
129 |
+
inputs=file_input,
|
130 |
+
label="File Examples"
|
131 |
+
)
|
132 |
|
|
|
133 |
app = gr.mount_gradio_app(app, demo, path="/")
|
134 |
|
|
|
135 |
if __name__ == "__main__":
|
136 |
import uvicorn
|
137 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|