text-process / app.py
Rivalcoder
Add files
3757f34
raw
history blame
4.61 kB
import tempfile
from transformers import pipeline, RobertaForSequenceClassification, RobertaTokenizer
import gradio as gr
from fastapi import FastAPI, UploadFile, File, Request, HTTPException
import os
import json
from typing import Optional, Dict, List
import torch
# Initialize models
model_name = "cardiffnlp/twitter-roberta-base-emotion"
tokenizer = RobertaTokenizer.from_pretrained(model_name)
model = RobertaForSequenceClassification.from_pretrained(model_name)
emotion_analysis = pipeline("text-classification",
model=model,
tokenizer=tokenizer,
return_all_scores=True)
app = FastAPI()
def save_upload_file(upload_file: UploadFile) -> str:
"""Save uploaded file to temporary location"""
try:
suffix = os.path.splitext(upload_file.filename)[1]
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
content = upload_file.file.read()
if suffix == '.json':
content = content.decode('utf-8') # Decode JSON files
tmp.write(content if isinstance(content, bytes) else content.encode())
return tmp.name
finally:
upload_file.file.close()
@app.post("/api/predict")
async def predict_from_upload(file: UploadFile = File(...)):
"""API endpoint for file uploads"""
try:
temp_path = save_upload_file(file)
if temp_path.endswith('.json'):
with open(temp_path, 'r') as f:
data = json.load(f)
text = data.get('description', '')
else:
with open(temp_path, 'r') as f:
text = f.read()
if not text.strip():
raise HTTPException(status_code=400, detail="No text content found")
result = emotion_analysis(text)
emotions = [{'label': e['label'], 'score': float(e['score'])}
for e in sorted(result[0], key=lambda x: x['score'], reverse=True)]
os.unlink(temp_path)
return {"success": True, "results": emotions}
except Exception as e:
if 'temp_path' in locals() and os.path.exists(temp_path):
os.unlink(temp_path)
raise HTTPException(status_code=500, detail=str(e))
# Modified gradio_predict to handle both input types correctly
def gradio_predict(input_data, file_data=None):
"""Handle both direct text and file uploads"""
try:
# Determine input source
if file_data is not None: # File upload takes precedence
temp_path = save_upload_file(file_data)
if temp_path.endswith('.json'):
with open(temp_path, 'r') as f:
data = json.load(f)
text = data.get('description', '')
else:
with open(temp_path, 'r') as f:
text = f.read()
os.unlink(temp_path)
else: # Use direct text input
text = input_data
if not text.strip():
return {"error": "No text content found"}
result = emotion_analysis(text)
return {
"emotions": [
{e['label']: float(e['score'])}
for e in sorted(result[0], key=lambda x: x['score'], reverse=True)
]
}
except Exception as e:
return {"error": str(e)}
# Updated Gradio interface with proper input handling
with gr.Blocks() as demo:
gr.Markdown("# Text Emotion Analysis")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(label="Enter text directly", lines=5)
file_input = gr.File(label="Or upload file", file_types=[".txt", ".json"])
submit_btn = gr.Button("Analyze")
with gr.Column():
output = gr.JSON(label="Results")
# Handle both input methods
submit_btn.click(
fn=gradio_predict,
inputs=[text_input, file_input],
outputs=output,
api_name="predict"
)
# Examples with both input types
gr.Examples(
examples=[
["I'm feeling excited about this new project!"],
["This situation makes me anxious and worried"]
],
inputs=text_input
)
gr.Examples(
examples=[
["example1.json"],
["example2.txt"]
],
inputs=file_input,
label="File Examples"
)
app = gr.mount_gradio_app(app, demo, path="/")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)