Spaces:
Running
Running
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch import Tensor | |
class EmbeddingLayer(nn.Module): | |
def __init__(self, vocab_size: int, d_model: int = 768): | |
super().__init__() | |
self.d_model = d_model | |
self.lut = nn.Embedding( | |
num_embeddings=vocab_size, embedding_dim=d_model | |
) # (vocab_size, d_model) | |
def forward(self, x): | |
# x shape: (batch_size, seq_len) | |
return self.lut(x) * math.sqrt(self.d_model) # (batch_size, seq_len, d_model) | |
class PositionalEncoding(nn.Module): | |
def __init__(self, d_model: int = 768, dropout: float = 0.1, max_length: int = 128): | |
super().__init__() | |
self.dropout = nn.Dropout(p=dropout) | |
pe = torch.zeros(max_length, d_model) # (max_length, d_model) | |
# Create position column | |
k = torch.arange(0, max_length).unsqueeze(dim=1) # (max_length, 1) | |
# Use the log version of the function for positional encodings | |
div_term = torch.exp( | |
torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model) | |
) # (d_model / 2) | |
# Use sine for the even indices and cosine for the odd indices | |
pe[:, 0::2] = torch.sin(k * div_term) | |
pe[:, 1::2] = torch.cos(k * div_term) | |
pe = pe.unsqueeze(dim=0) # Add the batch dimension(1, max_length, d_model) | |
# We use a buffer because the positional encoding is fixed and not a model paramter that we want to be updated during backpropagation. | |
self.register_buffer( | |
"pe", pe | |
) # Buffers are saved with the model state and are moved to the correct device | |
def forward(self, x): | |
# x shape: (batch_size, seq_length, d_model) | |
x += self.pe[:, : x.size(1)] | |
return self.dropout(x) | |
class MultiHeadAttention(nn.Module): | |
def __init__(self, d_model: int = 768, n_heads: int = 8, dropout: float = 0.1): | |
super().__init__() | |
assert d_model % n_heads == 0 | |
self.d_model = d_model | |
self.n_heads = n_heads | |
self.d_key = d_model // n_heads | |
self.Wq = nn.Linear(in_features=d_model, out_features=d_model) | |
self.Wk = nn.Linear(in_features=d_model, out_features=d_model) | |
self.Wv = nn.Linear(in_features=d_model, out_features=d_model) | |
self.Wo = nn.Linear(in_features=d_model, out_features=d_model) | |
self.dropout = nn.Dropout(p=dropout) | |
def forward(self, query: Tensor, key: Tensor, value: Tensor, mask: Tensor = None): | |
# input shape: (batch_size, seq_len, d_model) | |
batch_size = key.size(0) | |
Q = self.Wq(query) | |
K = self.Wk(key) | |
V = self.Wv(value) | |
Q = Q.view(batch_size, -1, self.n_heads, self.d_key).permute( | |
0, 2, 1, 3 | |
) # (batch_size, n_heads, q_length, d_key) | |
K = K.view(batch_size, -1, self.n_heads, self.d_key).permute( | |
0, 2, 1, 3 | |
) # (batch_size, n_heads, k_length, d_key) | |
V = V.view(batch_size, -1, self.n_heads, self.d_key).permute( | |
0, 2, 1, 3 | |
) # (batch_size, n_heads, v_length, d_key) | |
scaled_dot_product = torch.matmul(Q, K.permute(0, 1, 3, 2)) / math.sqrt( | |
self.d_key | |
) # (batch_size, n_heads, q_length, k_length) | |
if mask is not None: | |
scaled_dot_product = scaled_dot_product.masked_fill( | |
mask == 0, float("-inf") | |
) | |
attention_probs = torch.softmax(scaled_dot_product, dim=-1) | |
A = torch.matmul( | |
self.dropout(attention_probs), V | |
) # (batch_size, n_heads, q_length, d_key) | |
A = A.permute(0, 2, 1, 3) # (batch_size, q_length, n_heads, d_key) | |
A = A.contiguous().view( | |
batch_size, -1, self.n_heads * self.d_key | |
) # (batch_size, q_length, d_model) | |
output = self.Wo(A) # (batch_size, q_length, d_model) | |
return output, attention_probs | |
class PositionwiseFeedForward(nn.Module): | |
def __init__(self, d_model: int = 768, dropout: float = 0.1): | |
super().__init__() | |
self.ffn = nn.Sequential( | |
nn.Linear(in_features=d_model, out_features=(d_model * 4)), | |
nn.ReLU(), | |
nn.Linear(in_features=(d_model * 4), out_features=d_model), | |
nn.Dropout(p=dropout), | |
) | |
def forward(self, x): | |
# x shape: (batch_size, q_length, d_model) | |
return self.ffn(x) # (batch_size, q_length, d_model) | |
class EncoderLayer(nn.Module): | |
def __init__(self, d_model: int = 768, n_heads: int = 8, dropout: float = 0.1): | |
super().__init__() | |
self.attention = MultiHeadAttention( | |
d_model=d_model, n_heads=n_heads, dropout=dropout | |
) | |
self.attention_layer_norm = nn.LayerNorm(d_model) | |
self.position_wise_ffn = PositionwiseFeedForward( | |
d_model=d_model, dropout=dropout | |
) | |
self.ffn_layer_norm = nn.LayerNorm(d_model) | |
self.dropout = nn.Dropout(p=dropout) | |
def forward(self, src: Tensor, src_mask: Tensor): | |
_src, attention_probs = self.attention( | |
query=src, key=src, value=src, mask=src_mask | |
) | |
src = self.attention_layer_norm(src + self.dropout(_src)) | |
_src = self.position_wise_ffn(src) | |
src = self.ffn_layer_norm(src + self.dropout(_src)) | |
return src, attention_probs | |
class Encoder(nn.Module): | |
def __init__( | |
self, | |
d_model: int = 768, | |
n_layers: int = 3, | |
n_heads: int = 8, | |
dropout: float = 0.1, | |
): | |
super().__init__() | |
self.layers = nn.ModuleList( | |
[ | |
EncoderLayer(d_model=d_model, n_heads=n_heads, dropout=dropout) | |
for layer in range(n_layers) | |
] | |
) | |
self.dropout = nn.Dropout(p=dropout) | |
def forward(self, src: Tensor, src_mask: Tensor): | |
for layer in self.layers: | |
src, attention_probs = layer(src, src_mask) | |
self.attention_probs = attention_probs | |
# src += torch.randn_like(src) * 0.001 | |
return src | |
class Transformer(nn.Module): | |
def __init__( | |
self, | |
encoder: Encoder, | |
src_embed: EmbeddingLayer, | |
src_pad_idx: int, | |
device, | |
d_model: int = 768, | |
num_labels: int = 5, | |
): | |
super().__init__() | |
self.encoder = encoder | |
self.src_embed = src_embed | |
self.device = device | |
self.src_pad_idx = src_pad_idx | |
self.dropout = nn.Dropout(p=0.1) | |
self.classifier = nn.Linear(in_features=d_model, out_features=num_labels) | |
def make_src_mask(self, src: Tensor): | |
# Assign 1 to tokens that need attended to and 0 to padding tokens, then add 2 dimensions | |
src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2) | |
return src_mask | |
def forward(self, src: Tensor): | |
src_mask = self.make_src_mask(src) # (batch_size, 1, 1, src_seq_length) | |
output = self.encoder( | |
self.src_embed(src), src_mask | |
) # (batch_size, src_seq_length, d_model) | |
output = output[ | |
:, 0, : | |
] # Get the sos token vector representation (works sort of like a cls token in ViT) shape: (batch_size, 1, d_model) | |
logits = self.classifier(self.dropout(output)) | |
return logits | |
def make_model( | |
device, | |
tokenizer, | |
n_layers: int = 3, | |
d_model: int = 768, | |
num_labels: int = 5, | |
n_heads: int = 8, | |
dropout: float = 0.1, | |
max_length: int = 128, | |
): | |
encoder = Encoder( | |
d_model=d_model, n_layers=n_layers, n_heads=n_heads, dropout=dropout | |
) | |
src_embed = EmbeddingLayer(vocab_size=tokenizer.vocab_size, d_model=d_model) | |
pos_enc = PositionalEncoding( | |
d_model=d_model, dropout=dropout, max_length=max_length | |
) | |
model = Transformer( | |
encoder=encoder, | |
src_embed=nn.Sequential(src_embed, pos_enc), | |
src_pad_idx=tokenizer.pad_token_id, | |
device=device, | |
d_model=d_model, | |
num_labels=num_labels, | |
) | |
# Initialize parameters with Xaviar/Glorot | |
# This maintains a consistent variance of activations throughout the network | |
# Helps avoid issues like vanishing or exploding gradients. | |
for p in model.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
return model | |
def get_sentiment(text, model, tokenizer, device, max_length: int = 32): | |
model.eval() | |
encoded = model.src_embed[0].lut.weight.new_tensor([]) | |
encoded = tokenizer( | |
text, | |
truncation=True, | |
max_length=max_length, | |
padding="max_length", | |
return_tensors="pt", | |
) | |
src_tensor = encoded["input_ids"].to(device) | |
with torch.inference_mode(): | |
logits = model(src_tensor) # shape: (batch_size, num_labels) | |
pred_index = torch.argmax(logits, dim=1).item() | |
sentiment_map = { | |
0: "Very Negative", | |
1: "Negative", | |
2: "Neutral", | |
3: "Positive", | |
4: "Very Positive", | |
} | |
return sentiment_map.get(pred_index, "Unknown") | |