Spaces:
Running
Running
File size: 9,079 Bytes
6addb3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
class EmbeddingLayer(nn.Module):
def __init__(self, vocab_size: int, d_model: int = 768):
super().__init__()
self.d_model = d_model
self.lut = nn.Embedding(
num_embeddings=vocab_size, embedding_dim=d_model
) # (vocab_size, d_model)
def forward(self, x):
# x shape: (batch_size, seq_len)
return self.lut(x) * math.sqrt(self.d_model) # (batch_size, seq_len, d_model)
class PositionalEncoding(nn.Module):
def __init__(self, d_model: int = 768, dropout: float = 0.1, max_length: int = 128):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_length, d_model) # (max_length, d_model)
# Create position column
k = torch.arange(0, max_length).unsqueeze(dim=1) # (max_length, 1)
# Use the log version of the function for positional encodings
div_term = torch.exp(
torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model)
) # (d_model / 2)
# Use sine for the even indices and cosine for the odd indices
pe[:, 0::2] = torch.sin(k * div_term)
pe[:, 1::2] = torch.cos(k * div_term)
pe = pe.unsqueeze(dim=0) # Add the batch dimension(1, max_length, d_model)
# We use a buffer because the positional encoding is fixed and not a model paramter that we want to be updated during backpropagation.
self.register_buffer(
"pe", pe
) # Buffers are saved with the model state and are moved to the correct device
def forward(self, x):
# x shape: (batch_size, seq_length, d_model)
x += self.pe[:, : x.size(1)]
return self.dropout(x)
class MultiHeadAttention(nn.Module):
def __init__(self, d_model: int = 768, n_heads: int = 8, dropout: float = 0.1):
super().__init__()
assert d_model % n_heads == 0
self.d_model = d_model
self.n_heads = n_heads
self.d_key = d_model // n_heads
self.Wq = nn.Linear(in_features=d_model, out_features=d_model)
self.Wk = nn.Linear(in_features=d_model, out_features=d_model)
self.Wv = nn.Linear(in_features=d_model, out_features=d_model)
self.Wo = nn.Linear(in_features=d_model, out_features=d_model)
self.dropout = nn.Dropout(p=dropout)
def forward(self, query: Tensor, key: Tensor, value: Tensor, mask: Tensor = None):
# input shape: (batch_size, seq_len, d_model)
batch_size = key.size(0)
Q = self.Wq(query)
K = self.Wk(key)
V = self.Wv(value)
Q = Q.view(batch_size, -1, self.n_heads, self.d_key).permute(
0, 2, 1, 3
) # (batch_size, n_heads, q_length, d_key)
K = K.view(batch_size, -1, self.n_heads, self.d_key).permute(
0, 2, 1, 3
) # (batch_size, n_heads, k_length, d_key)
V = V.view(batch_size, -1, self.n_heads, self.d_key).permute(
0, 2, 1, 3
) # (batch_size, n_heads, v_length, d_key)
scaled_dot_product = torch.matmul(Q, K.permute(0, 1, 3, 2)) / math.sqrt(
self.d_key
) # (batch_size, n_heads, q_length, k_length)
if mask is not None:
scaled_dot_product = scaled_dot_product.masked_fill(
mask == 0, float("-inf")
)
attention_probs = torch.softmax(scaled_dot_product, dim=-1)
A = torch.matmul(
self.dropout(attention_probs), V
) # (batch_size, n_heads, q_length, d_key)
A = A.permute(0, 2, 1, 3) # (batch_size, q_length, n_heads, d_key)
A = A.contiguous().view(
batch_size, -1, self.n_heads * self.d_key
) # (batch_size, q_length, d_model)
output = self.Wo(A) # (batch_size, q_length, d_model)
return output, attention_probs
class PositionwiseFeedForward(nn.Module):
def __init__(self, d_model: int = 768, dropout: float = 0.1):
super().__init__()
self.ffn = nn.Sequential(
nn.Linear(in_features=d_model, out_features=(d_model * 4)),
nn.ReLU(),
nn.Linear(in_features=(d_model * 4), out_features=d_model),
nn.Dropout(p=dropout),
)
def forward(self, x):
# x shape: (batch_size, q_length, d_model)
return self.ffn(x) # (batch_size, q_length, d_model)
class EncoderLayer(nn.Module):
def __init__(self, d_model: int = 768, n_heads: int = 8, dropout: float = 0.1):
super().__init__()
self.attention = MultiHeadAttention(
d_model=d_model, n_heads=n_heads, dropout=dropout
)
self.attention_layer_norm = nn.LayerNorm(d_model)
self.position_wise_ffn = PositionwiseFeedForward(
d_model=d_model, dropout=dropout
)
self.ffn_layer_norm = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(p=dropout)
def forward(self, src: Tensor, src_mask: Tensor):
_src, attention_probs = self.attention(
query=src, key=src, value=src, mask=src_mask
)
src = self.attention_layer_norm(src + self.dropout(_src))
_src = self.position_wise_ffn(src)
src = self.ffn_layer_norm(src + self.dropout(_src))
return src, attention_probs
class Encoder(nn.Module):
def __init__(
self,
d_model: int = 768,
n_layers: int = 3,
n_heads: int = 8,
dropout: float = 0.1,
):
super().__init__()
self.layers = nn.ModuleList(
[
EncoderLayer(d_model=d_model, n_heads=n_heads, dropout=dropout)
for layer in range(n_layers)
]
)
self.dropout = nn.Dropout(p=dropout)
def forward(self, src: Tensor, src_mask: Tensor):
for layer in self.layers:
src, attention_probs = layer(src, src_mask)
self.attention_probs = attention_probs
# src += torch.randn_like(src) * 0.001
return src
class Transformer(nn.Module):
def __init__(
self,
encoder: Encoder,
src_embed: EmbeddingLayer,
src_pad_idx: int,
device,
d_model: int = 768,
num_labels: int = 5,
):
super().__init__()
self.encoder = encoder
self.src_embed = src_embed
self.device = device
self.src_pad_idx = src_pad_idx
self.dropout = nn.Dropout(p=0.1)
self.classifier = nn.Linear(in_features=d_model, out_features=num_labels)
def make_src_mask(self, src: Tensor):
# Assign 1 to tokens that need attended to and 0 to padding tokens, then add 2 dimensions
src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2)
return src_mask
def forward(self, src: Tensor):
src_mask = self.make_src_mask(src) # (batch_size, 1, 1, src_seq_length)
output = self.encoder(
self.src_embed(src), src_mask
) # (batch_size, src_seq_length, d_model)
output = output[
:, 0, :
] # Get the sos token vector representation (works sort of like a cls token in ViT) shape: (batch_size, 1, d_model)
logits = self.classifier(self.dropout(output))
return logits
def make_model(
device,
tokenizer,
n_layers: int = 3,
d_model: int = 768,
num_labels: int = 5,
n_heads: int = 8,
dropout: float = 0.1,
max_length: int = 128,
):
encoder = Encoder(
d_model=d_model, n_layers=n_layers, n_heads=n_heads, dropout=dropout
)
src_embed = EmbeddingLayer(vocab_size=tokenizer.vocab_size, d_model=d_model)
pos_enc = PositionalEncoding(
d_model=d_model, dropout=dropout, max_length=max_length
)
model = Transformer(
encoder=encoder,
src_embed=nn.Sequential(src_embed, pos_enc),
src_pad_idx=tokenizer.pad_token_id,
device=device,
d_model=d_model,
num_labels=num_labels,
)
# Initialize parameters with Xaviar/Glorot
# This maintains a consistent variance of activations throughout the network
# Helps avoid issues like vanishing or exploding gradients.
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
return model
def get_sentiment(text, model, tokenizer, device, max_length: int = 32):
model.eval()
encoded = model.src_embed[0].lut.weight.new_tensor([])
encoded = tokenizer(
text,
truncation=True,
max_length=max_length,
padding="max_length",
return_tensors="pt",
)
src_tensor = encoded["input_ids"].to(device)
with torch.inference_mode():
logits = model(src_tensor) # shape: (batch_size, num_labels)
pred_index = torch.argmax(logits, dim=1).item()
sentiment_map = {
0: "Very Negative",
1: "Negative",
2: "Neutral",
3: "Positive",
4: "Very Positive",
}
return sentiment_map.get(pred_index, "Unknown")
|