RishabA's picture
Update app.py
55a2485 verified
import torch
from torchvision import transforms
from PIL import Image
import gradio as gr
from transformers import AutoTokenizer
from model import CaptioningTransformer
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
image_size = 128
patch_size = 8
d_model = 192
n_layers = 6
n_heads = 8
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
transform = transforms.Compose(
[
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
model = CaptioningTransformer(
image_size=image_size,
in_channels=3,
vocab_size=tokenizer.vocab_size,
device=device,
patch_size=patch_size,
n_layers=n_layers,
d_model=d_model,
n_heads=n_heads,
).to(device)
model_path = "image_captioning_model.pt"
model.load_state_dict(torch.load(model_path, map_location=device))
model.eval()
def make_prediction(
model, sos_token, eos_token, image, max_len=50, temp=0.5, device=device
):
log_tokens = [sos_token]
with torch.inference_mode():
image_embedding = model.encoder(image.to(device))
for _ in range(max_len):
input_tokens = torch.cat(log_tokens, dim=1)
data_pred = model.decoder(input_tokens.to(device), image_embedding)
dist = torch.distributions.Categorical(logits=data_pred[:, -1] / temp)
next_tokens = dist.sample().reshape(1, 1)
log_tokens.append(next_tokens.cpu())
if next_tokens.item() == 102:
break
return torch.cat(log_tokens, dim=1)
def predict(image: Image.Image):
img_tensor = transform(image).unsqueeze(0)
sos_token = 101 * torch.ones(1, 1).long().to(device)
tokens = make_prediction(model, sos_token, 102, img_tensor)
caption = tokenizer.decode(tokens[0], skip_special_tokens=True)
return caption
with gr.Blocks(css=".block-title { font-size: 48px; font-weight: bold; }") as demo:
gr.Markdown("<div class='block-title'>Image Captioning with PyTorch</div>")
gr.Markdown("Upload an image and get a descriptive caption about the image:")
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Your Image")
generate_button = gr.Button("Generate Caption")
with gr.Column():
caption_output = gr.Textbox(
label="Caption Output",
placeholder="Your generated caption will appear here...",
)
generate_button.click(fn=predict, inputs=image_input, outputs=caption_output)
if __name__ == "__main__":
demo.launch(share=True)