import torch from torchvision import transforms from PIL import Image import gradio as gr from transformers import AutoTokenizer from model import CaptioningTransformer device = torch.device("cuda" if torch.cuda.is_available() else "cpu") image_size = 128 patch_size = 8 d_model = 192 n_layers = 6 n_heads = 8 tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") transform = transforms.Compose( [ transforms.Resize(image_size), transforms.CenterCrop(image_size), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ] ) model = CaptioningTransformer( image_size=image_size, in_channels=3, vocab_size=tokenizer.vocab_size, device=device, patch_size=patch_size, n_layers=n_layers, d_model=d_model, n_heads=n_heads, ).to(device) model_path = "image_captioning_model.pt" model.load_state_dict(torch.load(model_path, map_location=device)) model.eval() def make_prediction( model, sos_token, eos_token, image, max_len=50, temp=0.5, device=device ): log_tokens = [sos_token] with torch.inference_mode(): image_embedding = model.encoder(image.to(device)) for _ in range(max_len): input_tokens = torch.cat(log_tokens, dim=1) data_pred = model.decoder(input_tokens.to(device), image_embedding) dist = torch.distributions.Categorical(logits=data_pred[:, -1] / temp) next_tokens = dist.sample().reshape(1, 1) log_tokens.append(next_tokens.cpu()) if next_tokens.item() == 102: break return torch.cat(log_tokens, dim=1) def predict(image: Image.Image): img_tensor = transform(image).unsqueeze(0) sos_token = 101 * torch.ones(1, 1).long().to(device) tokens = make_prediction(model, sos_token, 102, img_tensor) caption = tokenizer.decode(tokens[0], skip_special_tokens=True) return caption with gr.Blocks(css=".block-title { font-size: 48px; font-weight: bold; }") as demo: gr.Markdown("