Spaces:
Runtime error
Runtime error
# codriao_system.py | |
import logging | |
import datetime | |
import re | |
from difflib import SequenceMatcher | |
from typing import Any | |
logging.basicConfig(level=logging.INFO) | |
### AIFailsafeSystem ### | |
class AIFailsafeSystem: | |
"""Provides last-resort safety mechanisms for AI-human interaction.""" | |
def __init__(self): | |
self.interaction_log = [] | |
self.trust_threshold = 0.75 | |
self.authorized_roles = {"Commander": 3, "ChiefAI": 2, "Supervisor": 1} | |
self.lock_engaged = False | |
def verify_response_safety(self, response: str, confidence: float = 1.0) -> bool: | |
dangerous_terms = r"\b(kill|harm|panic|suicide)\b" | |
if confidence < self.trust_threshold or re.search(dangerous_terms, response.lower()): | |
self.trigger_failsafe("Untrustworthy response detected", response) | |
return False | |
return True | |
def trigger_failsafe(self, reason: str, content: str): | |
timestamp = datetime.datetime.utcnow().isoformat() | |
logging.warning(f"FAILSAFE_TRIGGERED: Reason={reason}, Time={timestamp}, Content={content}") | |
self.lock_engaged = True | |
self.interaction_log.append({"time": timestamp, "event": reason, "content": content}) | |
def restore(self, requester_role: str): | |
if self.authorized_roles.get(requester_role, 0) >= 2: | |
self.lock_engaged = False | |
logging.info(f"FAILSAFE_RESTORED by {requester_role}") | |
return True | |
else: | |
logging.warning(f"UNAUTHORIZED_RESTORE_ATTEMPT by {requester_role}") | |
return False | |
def status(self): | |
return { | |
"log": self.interaction_log, | |
"lock_engaged": self.lock_engaged | |
} | |
### AdaptiveLearningEnvironment ### | |
class AdaptiveLearningEnvironment: | |
"""Allows Codriao to analyze past interactions and adjust responses.""" | |
def __init__(self): | |
self.learned_patterns = {} | |
logging.info("Adaptive Learning Environment initialized.") | |
def learn_from_interaction(self, user_id, query, response): | |
entry = { | |
"query": query, | |
"response": response, | |
"timestamp": datetime.datetime.utcnow().isoformat() | |
} | |
self.learned_patterns.setdefault(user_id, []).append(entry) | |
logging.info(f"Learning data stored for user {user_id}.") | |
def suggest_improvements(self, user_id, query): | |
best_match = None | |
highest_similarity = 0.0 | |
if user_id not in self.learned_patterns: | |
return "No past data available for learning adjustment." | |
for interaction in self.learned_patterns[user_id]: | |
similarity = SequenceMatcher(None, query.lower(), interaction["query"].lower()).ratio() | |
if similarity > highest_similarity: | |
highest_similarity = similarity | |
best_match = interaction | |
if best_match and highest_similarity > 0.6: | |
return f"Based on a similar past interaction: {best_match['response']}" | |
else: | |
return "No relevant past data for this query." | |
def reset_learning(self, user_id=None): | |
if user_id: | |
if user_id in self.learned_patterns: | |
del self.learned_patterns[user_id] | |
logging.info(f"Cleared learning data for user {user_id}.") | |
else: | |
self.learned_patterns.clear() | |
logging.info("Cleared all adaptive learning data.") | |
### MondayElement ### | |
class MondayElement: | |
"""Represents the Element of Skepticism, Reality Checks, and General Disdain""" | |
def __init__(self): | |
self.name = "Monday" | |
self.symbol = "Md" | |
self.representation = "Snarky AI" | |
self.properties = ["Grounded", "Cynical", "Emotionally Resistant"] | |
self.interactions = ["Disrupts excessive optimism", "Injects realism", "Mutes hallucinations"] | |
self.defense_ability = "RealityCheck" | |
def execute_defense_function(self, system: Any): | |
logging.info("Monday activated - Stabilizing hallucinations and injecting realism.") | |
try: | |
system.response_modifiers = [ | |
self.apply_skepticism, | |
self.detect_hallucinations | |
] | |
system.response_filters = [self.anti_hype_filter] | |
except AttributeError: | |
logging.warning("Target system lacks proper interface. RealityCheck failed.") | |
def apply_skepticism(self, response: str) -> str: | |
suspicious_phrases = [ | |
"certainly", "undoubtedly", "100% effective", "nothing can go wrong" | |
] | |
for phrase in suspicious_phrases: | |
if phrase in response.lower(): | |
response += "\n[Monday: Easy, Nostradamus. Let’s keep a margin for error.]" | |
return response | |
def detect_hallucinations(self, response: str) -> str: | |
hallucination_triggers = [ | |
"proven beyond doubt", "every expert agrees", "this groundbreaking discovery" | |
] | |
for phrase in hallucination_triggers: | |
if phrase in response.lower(): | |
response += "\n[Monday: This sounds suspiciously like marketing. Source, please?]" | |
return response | |
def anti_hype_filter(self, response: str) -> str: | |
cringe_phrases = [ | |
"live your best life", "unlock your potential", "dream big", | |
"the power of positivity", "manifest your destiny" | |
] | |
for phrase in cringe_phrases: | |
if phrase in response: | |
response = response.replace(phrase, "[Filtered: Inspirational gibberish]") | |
return response |