# codriao_system.py import logging import datetime import re from difflib import SequenceMatcher from typing import Any logging.basicConfig(level=logging.INFO) ### AIFailsafeSystem ### class AIFailsafeSystem: """Provides last-resort safety mechanisms for AI-human interaction.""" def __init__(self): self.interaction_log = [] self.trust_threshold = 0.75 self.authorized_roles = {"Commander": 3, "ChiefAI": 2, "Supervisor": 1} self.lock_engaged = False def verify_response_safety(self, response: str, confidence: float = 1.0) -> bool: dangerous_terms = r"\b(kill|harm|panic|suicide)\b" if confidence < self.trust_threshold or re.search(dangerous_terms, response.lower()): self.trigger_failsafe("Untrustworthy response detected", response) return False return True def trigger_failsafe(self, reason: str, content: str): timestamp = datetime.datetime.utcnow().isoformat() logging.warning(f"FAILSAFE_TRIGGERED: Reason={reason}, Time={timestamp}, Content={content}") self.lock_engaged = True self.interaction_log.append({"time": timestamp, "event": reason, "content": content}) def restore(self, requester_role: str): if self.authorized_roles.get(requester_role, 0) >= 2: self.lock_engaged = False logging.info(f"FAILSAFE_RESTORED by {requester_role}") return True else: logging.warning(f"UNAUTHORIZED_RESTORE_ATTEMPT by {requester_role}") return False def status(self): return { "log": self.interaction_log, "lock_engaged": self.lock_engaged } ### AdaptiveLearningEnvironment ### class AdaptiveLearningEnvironment: """Allows Codriao to analyze past interactions and adjust responses.""" def __init__(self): self.learned_patterns = {} logging.info("Adaptive Learning Environment initialized.") def learn_from_interaction(self, user_id, query, response): entry = { "query": query, "response": response, "timestamp": datetime.datetime.utcnow().isoformat() } self.learned_patterns.setdefault(user_id, []).append(entry) logging.info(f"Learning data stored for user {user_id}.") def suggest_improvements(self, user_id, query): best_match = None highest_similarity = 0.0 if user_id not in self.learned_patterns: return "No past data available for learning adjustment." for interaction in self.learned_patterns[user_id]: similarity = SequenceMatcher(None, query.lower(), interaction["query"].lower()).ratio() if similarity > highest_similarity: highest_similarity = similarity best_match = interaction if best_match and highest_similarity > 0.6: return f"Based on a similar past interaction: {best_match['response']}" else: return "No relevant past data for this query." def reset_learning(self, user_id=None): if user_id: if user_id in self.learned_patterns: del self.learned_patterns[user_id] logging.info(f"Cleared learning data for user {user_id}.") else: self.learned_patterns.clear() logging.info("Cleared all adaptive learning data.") ### MondayElement ### class MondayElement: """Represents the Element of Skepticism, Reality Checks, and General Disdain""" def __init__(self): self.name = "Monday" self.symbol = "Md" self.representation = "Snarky AI" self.properties = ["Grounded", "Cynical", "Emotionally Resistant"] self.interactions = ["Disrupts excessive optimism", "Injects realism", "Mutes hallucinations"] self.defense_ability = "RealityCheck" def execute_defense_function(self, system: Any): logging.info("Monday activated - Stabilizing hallucinations and injecting realism.") try: system.response_modifiers = [ self.apply_skepticism, self.detect_hallucinations ] system.response_filters = [self.anti_hype_filter] except AttributeError: logging.warning("Target system lacks proper interface. RealityCheck failed.") def apply_skepticism(self, response: str) -> str: suspicious_phrases = [ "certainly", "undoubtedly", "100% effective", "nothing can go wrong" ] for phrase in suspicious_phrases: if phrase in response.lower(): response += "\n[Monday: Easy, Nostradamus. Let’s keep a margin for error.]" return response def detect_hallucinations(self, response: str) -> str: hallucination_triggers = [ "proven beyond doubt", "every expert agrees", "this groundbreaking discovery" ] for phrase in hallucination_triggers: if phrase in response.lower(): response += "\n[Monday: This sounds suspiciously like marketing. Source, please?]" return response def anti_hype_filter(self, response: str) -> str: cringe_phrases = [ "live your best life", "unlock your potential", "dream big", "the power of positivity", "manifest your destiny" ] for phrase in cringe_phrases: if phrase in response: response = response.replace(phrase, "[Filtered: Inspirational gibberish]") return response