|
import cv2 |
|
import numpy as np |
|
import os |
|
import tempfile |
|
from tqdm import tqdm |
|
import gradio as gr |
|
import ffmpeg |
|
|
|
def extract_frames(video_path): |
|
""" |
|
Extracts all frames from the input video. |
|
""" |
|
cap = cv2.VideoCapture(video_path) |
|
frames = [] |
|
while True: |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
frames.append(frame) |
|
cap.release() |
|
print(f"Extracted {len(frames)} frames from {video_path}") |
|
return frames |
|
|
|
def apply_style_propagation(frames, style_image_path, |
|
enable_temporal_reset=True, |
|
enable_median_filtering=True, |
|
enable_patch_based=True, |
|
enable_sharpening=True): |
|
""" |
|
Applies the style from the provided keyframe image to every frame using optical flow, |
|
with additional corrections controlled by boolean flags: |
|
- Temporal Reset/Re‑anchoring (if enabled) |
|
- Median filtering of the flow (if enabled) |
|
- Patch‑based correction for extreme flow (if enabled) |
|
- Sharpening after warping (if enabled) |
|
""" |
|
|
|
style_image = cv2.imread(style_image_path) |
|
if style_image is None: |
|
raise ValueError(f"Failed to load style image from {style_image_path}") |
|
h, w = frames[0].shape[:2] |
|
style_image = cv2.resize(style_image, (w, h)) |
|
|
|
original_styled = style_image.copy() |
|
|
|
styled_frames = [style_image] |
|
prev_gray = cv2.cvtColor(frames[0], cv2.COLOR_BGR2GRAY) |
|
|
|
|
|
reset_interval = 30 |
|
block_size = 16 |
|
patch_threshold = 10 |
|
search_margin = 10 |
|
|
|
for i in tqdm(range(1, len(frames)), desc="Propagating style"): |
|
curr_gray = cv2.cvtColor(frames[i], cv2.COLOR_BGR2GRAY) |
|
flow = cv2.calcOpticalFlowFarneback( |
|
prev_gray, curr_gray, None, |
|
pyr_scale=0.5, levels=3, winsize=15, |
|
iterations=3, poly_n=5, poly_sigma=1.2, flags=0 |
|
) |
|
|
|
|
|
if enable_median_filtering: |
|
flow_x = flow[..., 0] |
|
flow_y = flow[..., 1] |
|
flow_x_filtered = cv2.medianBlur(flow_x, 3) |
|
flow_y_filtered = cv2.medianBlur(flow_y, 3) |
|
flow_filtered = np.dstack((flow_x_filtered, flow_y_filtered)) |
|
else: |
|
flow_filtered = flow |
|
|
|
|
|
if enable_patch_based: |
|
flow_corrected = flow_filtered.copy() |
|
for by in range(0, h, block_size): |
|
for bx in range(0, w, block_size): |
|
|
|
y1, y2 = by, min(by + block_size, h) |
|
x1, x2 = bx, min(bx + block_size, w) |
|
block_flow = flow_filtered[y1:y2, x1:x2] |
|
mag = np.sqrt(block_flow[..., 0]**2 + block_flow[..., 1]**2) |
|
mean_mag = np.mean(mag) |
|
if mean_mag > patch_threshold: |
|
|
|
patch = prev_gray[y1:y2, x1:x2] |
|
sx1 = max(x1 - search_margin, 0) |
|
sy1 = max(by - search_margin, 0) |
|
sx2 = min(x2 + search_margin, w) |
|
sy2 = min(y2 + search_margin, h) |
|
search_region = curr_gray[sy1:sy2, sx1:sx2] |
|
if search_region.shape[0] < patch.shape[0] or search_region.shape[1] < patch.shape[1]: |
|
continue |
|
res = cv2.matchTemplate(search_region, patch, cv2.TM_SQDIFF_NORMED) |
|
_, _, min_loc, _ = cv2.minMaxLoc(res) |
|
best_x = sx1 + min_loc[0] |
|
best_y = sy1 + min_loc[1] |
|
offset_x = best_x - x1 |
|
offset_y = best_y - by |
|
flow_corrected[y1:y2, x1:x2, 0] = offset_x |
|
flow_corrected[y1:y2, x1:x2, 1] = offset_y |
|
else: |
|
flow_corrected = flow_filtered |
|
|
|
|
|
grid_x, grid_y = np.meshgrid(np.arange(w), np.arange(h)) |
|
map_x = grid_x + flow_corrected[..., 0] |
|
map_y = grid_y + flow_corrected[..., 1] |
|
map_x = np.clip(map_x, 0, w - 1).astype(np.float32) |
|
map_y = np.clip(map_y, 0, h - 1).astype(np.float32) |
|
|
|
|
|
warped_styled = cv2.remap(styled_frames[-1], map_x, map_y, interpolation=cv2.INTER_LINEAR) |
|
|
|
|
|
if enable_temporal_reset and (i % reset_interval == 0): |
|
warped_styled = cv2.addWeighted(warped_styled, 0.7, original_styled, 0.3, 0) |
|
|
|
|
|
if enable_sharpening: |
|
kernel = np.array([[0, -1, 0], |
|
[-1, 5, -1], |
|
[0, -1, 0]], dtype=np.float32) |
|
warped_styled = cv2.filter2D(warped_styled, -1, kernel) |
|
|
|
styled_frames.append(warped_styled) |
|
prev_gray = curr_gray |
|
|
|
print(f"Propagated style to {len(styled_frames)} frames.") |
|
sample_frame = styled_frames[len(styled_frames) // 2] |
|
print(f"Sample styled frame mean intensity: {np.mean(sample_frame):.2f}") |
|
return styled_frames |
|
|
|
def save_video_cv2(frames, output_path, fps=30): |
|
""" |
|
Saves a list of frames as a video using OpenCV. |
|
""" |
|
h, w, _ = frames[0].shape |
|
fourcc = cv2.VideoWriter_fourcc(*'mp4v') |
|
writer = cv2.VideoWriter(output_path, fourcc, fps, (w, h)) |
|
for frame in frames: |
|
writer.write(frame) |
|
writer.release() |
|
size = os.path.getsize(output_path) |
|
print(f"Intermediate video saved to {output_path} (size: {size} bytes)") |
|
|
|
def process_video(video_file, style_image_file, fps=30, target_width=0, target_height=0, |
|
enable_temporal_reset=True, |
|
enable_median_filtering=True, |
|
enable_patch_based=True, |
|
enable_sharpening=True): |
|
""" |
|
Processes the input video by applying the style image via optical flow propagation, |
|
with optional corrections (temporal reset, median filtering, patch-based correction, sharpening). |
|
Optionally downscale the video and style image to the specified resolution. |
|
Then re-encodes the video with FFmpeg for web compatibility. |
|
|
|
Parameters: |
|
- video_file: The input video file. |
|
- style_image_file: The stylized keyframe image. |
|
- fps: Output frames per second. |
|
- target_width: Target width for downscaling (0 for original). |
|
- target_height: Target height for downscaling (0 for original). |
|
- enable_temporal_reset: Boolean flag for temporal reset. |
|
- enable_median_filtering: Boolean flag for median filtering of flow. |
|
- enable_patch_based: Boolean flag for patch-based correction. |
|
- enable_sharpening: Boolean flag for sharpening post-warp. |
|
|
|
Returns: |
|
- Path to the final output video. |
|
""" |
|
|
|
video_path = video_file if isinstance(video_file, str) else video_file["name"] |
|
|
|
|
|
if isinstance(style_image_file, str): |
|
style_image_path = style_image_file |
|
elif isinstance(style_image_file, dict) and "name" in style_image_file: |
|
style_image_path = style_image_file["name"] |
|
elif isinstance(style_image_file, np.ndarray): |
|
tmp_style = os.path.join(tempfile.gettempdir(), "temp_style_image.jpeg") |
|
cv2.imwrite(tmp_style, cv2.cvtColor(style_image_file, cv2.COLOR_RGB2BGR)) |
|
style_image_path = tmp_style |
|
else: |
|
return "Error: Unsupported style image format." |
|
|
|
|
|
frames = extract_frames(video_path) |
|
if not frames: |
|
return "Error: No frames extracted from the video." |
|
|
|
original_h, original_w = frames[0].shape[:2] |
|
print(f"Original video resolution: {original_w}x{original_h}") |
|
|
|
|
|
if target_width > 0 and target_height > 0: |
|
print(f"Downscaling frames to resolution: {target_width}x{target_height}") |
|
frames = [cv2.resize(frame, (target_width, target_height)) for frame in frames] |
|
else: |
|
print("No downscaling applied. Using original resolution.") |
|
|
|
|
|
styled_frames = apply_style_propagation(frames, style_image_path, |
|
enable_temporal_reset=enable_temporal_reset, |
|
enable_median_filtering=enable_median_filtering, |
|
enable_patch_based=enable_patch_based, |
|
enable_sharpening=enable_sharpening) |
|
|
|
|
|
temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) |
|
temp_video_file.close() |
|
temp_video_path = temp_video_file.name |
|
save_video_cv2(styled_frames, temp_video_path, fps=fps) |
|
|
|
|
|
output_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) |
|
output_video_file.close() |
|
output_video_path = output_video_file.name |
|
|
|
try: |
|
( |
|
ffmpeg |
|
.input(temp_video_path) |
|
.output(output_video_path, vcodec='libx264', pix_fmt='yuv420p', r=fps) |
|
.run(overwrite_output=True, quiet=True) |
|
) |
|
except ffmpeg.Error as e: |
|
print("FFmpeg error:", e) |
|
return "Error during video re-encoding." |
|
|
|
final_size = os.path.getsize(output_video_path) |
|
print(f"Output video saved to {output_video_path} (size: {final_size} bytes)") |
|
if final_size == 0: |
|
return "Error: Output video file is empty." |
|
|
|
|
|
os.remove(temp_video_path) |
|
|
|
return output_video_path |
|
|
|
iface = gr.Interface( |
|
fn=process_video, |
|
inputs=[ |
|
gr.Video(label="Input Video (v.mp4)"), |
|
gr.Image(label="Stylized Keyframe (a.jpeg)"), |
|
gr.Slider(minimum=1, maximum=60, step=1, value=30, label="Output FPS"), |
|
gr.Slider(minimum=0, maximum=1920, step=1, value=0, label="Target Width (0 for original)"), |
|
gr.Slider(minimum=0, maximum=1080, step=1, value=0, label="Target Height (0 for original)"), |
|
gr.Checkbox(label="Enable Temporal Reset", value=True), |
|
gr.Checkbox(label="Enable Median Filtering", value=True), |
|
gr.Checkbox(label="Enable Patch-Based Correction", value=True), |
|
gr.Checkbox(label="Enable Sharpening", value=True) |
|
], |
|
outputs=gr.Video(label="Styled Video"), |
|
title="Optical Flow Style Propagation with Corrections", |
|
description=( |
|
"Upload a video and a stylized keyframe image. Optionally downscale to a target resolution.\n" |
|
"You can enable/disable the following corrections:\n" |
|
"• Temporal Reset/Re-anchoring\n" |
|
"• Median Filtering of Flow\n" |
|
"• Patch-Based Correction for Extreme Flow\n" |
|
"• Sharpening Post-Warping\n" |
|
"The output video is re-encoded for web compatibility." |
|
) |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch(share=True) |