File size: 11,720 Bytes
4bc60f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import cv2
import numpy as np
import os
import tempfile
from tqdm import tqdm
import gradio as gr
import ffmpeg
def extract_frames(video_path):
"""
Extracts all frames from the input video.
"""
cap = cv2.VideoCapture(video_path)
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
frames.append(frame)
cap.release()
print(f"Extracted {len(frames)} frames from {video_path}")
return frames
def apply_style_propagation(frames, style_image_path,
enable_temporal_reset=True,
enable_median_filtering=True,
enable_patch_based=True,
enable_sharpening=True):
"""
Applies the style from the provided keyframe image to every frame using optical flow,
with additional corrections controlled by boolean flags:
- Temporal Reset/Re‑anchoring (if enabled)
- Median filtering of the flow (if enabled)
- Patch‑based correction for extreme flow (if enabled)
- Sharpening after warping (if enabled)
"""
# Load and resize the style image to match video dimensions.
style_image = cv2.imread(style_image_path)
if style_image is None:
raise ValueError(f"Failed to load style image from {style_image_path}")
h, w = frames[0].shape[:2]
style_image = cv2.resize(style_image, (w, h))
# Keep a copy for temporal re-anchoring.
original_styled = style_image.copy()
styled_frames = [style_image]
prev_gray = cv2.cvtColor(frames[0], cv2.COLOR_BGR2GRAY)
# Parameters for corrections:
reset_interval = 30 # Every 30 frames, blend with original style.
block_size = 16 # Size of block for patch matching.
patch_threshold = 10 # Threshold for mean flow magnitude in a block.
search_margin = 10 # Margin around block for patch matching.
for i in tqdm(range(1, len(frames)), desc="Propagating style"):
curr_gray = cv2.cvtColor(frames[i], cv2.COLOR_BGR2GRAY)
flow = cv2.calcOpticalFlowFarneback(
prev_gray, curr_gray, None,
pyr_scale=0.5, levels=3, winsize=15,
iterations=3, poly_n=5, poly_sigma=1.2, flags=0
)
# --- Method 3: Median Filtering of the Flow ---
if enable_median_filtering:
flow_x = flow[..., 0]
flow_y = flow[..., 1]
flow_x_filtered = cv2.medianBlur(flow_x, 3)
flow_y_filtered = cv2.medianBlur(flow_y, 3)
flow_filtered = np.dstack((flow_x_filtered, flow_y_filtered))
else:
flow_filtered = flow
# --- Method 4: Patch-based Correction for Extreme Flow ---
if enable_patch_based:
flow_corrected = flow_filtered.copy()
for by in range(0, h, block_size):
for bx in range(0, w, block_size):
# Define block region (handle edges)
y1, y2 = by, min(by + block_size, h)
x1, x2 = bx, min(bx + block_size, w)
block_flow = flow_filtered[y1:y2, x1:x2]
mag = np.sqrt(block_flow[..., 0]**2 + block_flow[..., 1]**2)
mean_mag = np.mean(mag)
if mean_mag > patch_threshold:
# Use patch matching to recalc flow for this block.
patch = prev_gray[y1:y2, x1:x2]
sx1 = max(x1 - search_margin, 0)
sy1 = max(by - search_margin, 0)
sx2 = min(x2 + search_margin, w)
sy2 = min(y2 + search_margin, h)
search_region = curr_gray[sy1:sy2, sx1:sx2]
if search_region.shape[0] < patch.shape[0] or search_region.shape[1] < patch.shape[1]:
continue
res = cv2.matchTemplate(search_region, patch, cv2.TM_SQDIFF_NORMED)
_, _, min_loc, _ = cv2.minMaxLoc(res)
best_x = sx1 + min_loc[0]
best_y = sy1 + min_loc[1]
offset_x = best_x - x1
offset_y = best_y - by
flow_corrected[y1:y2, x1:x2, 0] = offset_x
flow_corrected[y1:y2, x1:x2, 1] = offset_y
else:
flow_corrected = flow_filtered
# Compute mapping coordinates.
grid_x, grid_y = np.meshgrid(np.arange(w), np.arange(h))
map_x = grid_x + flow_corrected[..., 0]
map_y = grid_y + flow_corrected[..., 1]
map_x = np.clip(map_x, 0, w - 1).astype(np.float32)
map_y = np.clip(map_y, 0, h - 1).astype(np.float32)
# Warp the previous styled frame.
warped_styled = cv2.remap(styled_frames[-1], map_x, map_y, interpolation=cv2.INTER_LINEAR)
# --- Method 2: Temporal Reset/Re-anchoring ---
if enable_temporal_reset and (i % reset_interval == 0):
warped_styled = cv2.addWeighted(warped_styled, 0.7, original_styled, 0.3, 0)
# --- Method 5: Sharpening Post-Warping ---
if enable_sharpening:
kernel = np.array([[0, -1, 0],
[-1, 5, -1],
[0, -1, 0]], dtype=np.float32)
warped_styled = cv2.filter2D(warped_styled, -1, kernel)
styled_frames.append(warped_styled)
prev_gray = curr_gray
print(f"Propagated style to {len(styled_frames)} frames.")
sample_frame = styled_frames[len(styled_frames) // 2]
print(f"Sample styled frame mean intensity: {np.mean(sample_frame):.2f}")
return styled_frames
def save_video_cv2(frames, output_path, fps=30):
"""
Saves a list of frames as a video using OpenCV.
"""
h, w, _ = frames[0].shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
writer = cv2.VideoWriter(output_path, fourcc, fps, (w, h))
for frame in frames:
writer.write(frame)
writer.release()
size = os.path.getsize(output_path)
print(f"Intermediate video saved to {output_path} (size: {size} bytes)")
def process_video(video_file, style_image_file, fps=30, target_width=0, target_height=0,
enable_temporal_reset=True,
enable_median_filtering=True,
enable_patch_based=True,
enable_sharpening=True):
"""
Processes the input video by applying the style image via optical flow propagation,
with optional corrections (temporal reset, median filtering, patch-based correction, sharpening).
Optionally downscale the video and style image to the specified resolution.
Then re-encodes the video with FFmpeg for web compatibility.
Parameters:
- video_file: The input video file.
- style_image_file: The stylized keyframe image.
- fps: Output frames per second.
- target_width: Target width for downscaling (0 for original).
- target_height: Target height for downscaling (0 for original).
- enable_temporal_reset: Boolean flag for temporal reset.
- enable_median_filtering: Boolean flag for median filtering of flow.
- enable_patch_based: Boolean flag for patch-based correction.
- enable_sharpening: Boolean flag for sharpening post-warp.
Returns:
- Path to the final output video.
"""
# Get the video file path.
video_path = video_file if isinstance(video_file, str) else video_file["name"]
# Process the style image input.
if isinstance(style_image_file, str):
style_image_path = style_image_file
elif isinstance(style_image_file, dict) and "name" in style_image_file:
style_image_path = style_image_file["name"]
elif isinstance(style_image_file, np.ndarray):
tmp_style = os.path.join(tempfile.gettempdir(), "temp_style_image.jpeg")
cv2.imwrite(tmp_style, cv2.cvtColor(style_image_file, cv2.COLOR_RGB2BGR))
style_image_path = tmp_style
else:
return "Error: Unsupported style image format."
# Extract frames from the video.
frames = extract_frames(video_path)
if not frames:
return "Error: No frames extracted from the video."
original_h, original_w = frames[0].shape[:2]
print(f"Original video resolution: {original_w}x{original_h}")
# Downscale if target dimensions are provided.
if target_width > 0 and target_height > 0:
print(f"Downscaling frames to resolution: {target_width}x{target_height}")
frames = [cv2.resize(frame, (target_width, target_height)) for frame in frames]
else:
print("No downscaling applied. Using original resolution.")
# Propagate style with the selected corrections.
styled_frames = apply_style_propagation(frames, style_image_path,
enable_temporal_reset=enable_temporal_reset,
enable_median_filtering=enable_median_filtering,
enable_patch_based=enable_patch_based,
enable_sharpening=enable_sharpening)
# Save intermediate video using OpenCV to a named temporary file.
temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
temp_video_file.close()
temp_video_path = temp_video_file.name
save_video_cv2(styled_frames, temp_video_path, fps=fps)
# Re-encode the video using FFmpeg for browser compatibility.
output_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
output_video_file.close()
output_video_path = output_video_file.name
try:
(
ffmpeg
.input(temp_video_path)
.output(output_video_path, vcodec='libx264', pix_fmt='yuv420p', r=fps)
.run(overwrite_output=True, quiet=True)
)
except ffmpeg.Error as e:
print("FFmpeg error:", e)
return "Error during video re-encoding."
final_size = os.path.getsize(output_video_path)
print(f"Output video saved to {output_video_path} (size: {final_size} bytes)")
if final_size == 0:
return "Error: Output video file is empty."
# Clean up the intermediate file.
os.remove(temp_video_path)
return output_video_path
iface = gr.Interface(
fn=process_video,
inputs=[
gr.Video(label="Input Video (v.mp4)"),
gr.Image(label="Stylized Keyframe (a.jpeg)"),
gr.Slider(minimum=1, maximum=60, step=1, value=30, label="Output FPS"),
gr.Slider(minimum=0, maximum=1920, step=1, value=0, label="Target Width (0 for original)"),
gr.Slider(minimum=0, maximum=1080, step=1, value=0, label="Target Height (0 for original)"),
gr.Checkbox(label="Enable Temporal Reset", value=True),
gr.Checkbox(label="Enable Median Filtering", value=True),
gr.Checkbox(label="Enable Patch-Based Correction", value=True),
gr.Checkbox(label="Enable Sharpening", value=True)
],
outputs=gr.Video(label="Styled Video"),
title="Optical Flow Style Propagation with Corrections",
description=(
"Upload a video and a stylized keyframe image. Optionally downscale to a target resolution.\n"
"You can enable/disable the following corrections:\n"
"• Temporal Reset/Re-anchoring\n"
"• Median Filtering of Flow\n"
"• Patch-Based Correction for Extreme Flow\n"
"• Sharpening Post-Warping\n"
"The output video is re-encoded for web compatibility."
)
)
if __name__ == "__main__":
iface.launch(share=True) |