File size: 11,720 Bytes
4bc60f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import cv2
import numpy as np
import os
import tempfile
from tqdm import tqdm
import gradio as gr
import ffmpeg

def extract_frames(video_path):
    """
    Extracts all frames from the input video.
    """
    cap = cv2.VideoCapture(video_path)
    frames = []
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        frames.append(frame)
    cap.release()
    print(f"Extracted {len(frames)} frames from {video_path}")
    return frames

def apply_style_propagation(frames, style_image_path,
                            enable_temporal_reset=True,
                            enable_median_filtering=True,
                            enable_patch_based=True,
                            enable_sharpening=True):
    """
    Applies the style from the provided keyframe image to every frame using optical flow,
    with additional corrections controlled by boolean flags:
      - Temporal Reset/Re‑anchoring (if enabled)
      - Median filtering of the flow (if enabled)
      - Patch‑based correction for extreme flow (if enabled)
      - Sharpening after warping (if enabled)
    """
    # Load and resize the style image to match video dimensions.
    style_image = cv2.imread(style_image_path)
    if style_image is None:
        raise ValueError(f"Failed to load style image from {style_image_path}")
    h, w = frames[0].shape[:2]
    style_image = cv2.resize(style_image, (w, h))
    # Keep a copy for temporal re-anchoring.
    original_styled = style_image.copy()
    
    styled_frames = [style_image]
    prev_gray = cv2.cvtColor(frames[0], cv2.COLOR_BGR2GRAY)
    
    # Parameters for corrections:
    reset_interval = 30         # Every 30 frames, blend with original style.
    block_size = 16             # Size of block for patch matching.
    patch_threshold = 10        # Threshold for mean flow magnitude in a block.
    search_margin = 10          # Margin around block for patch matching.
    
    for i in tqdm(range(1, len(frames)), desc="Propagating style"):
        curr_gray = cv2.cvtColor(frames[i], cv2.COLOR_BGR2GRAY)
        flow = cv2.calcOpticalFlowFarneback(
            prev_gray, curr_gray, None,
            pyr_scale=0.5, levels=3, winsize=15,
            iterations=3, poly_n=5, poly_sigma=1.2, flags=0
        )
        
        # --- Method 3: Median Filtering of the Flow ---
        if enable_median_filtering:
            flow_x = flow[..., 0]
            flow_y = flow[..., 1]
            flow_x_filtered = cv2.medianBlur(flow_x, 3)
            flow_y_filtered = cv2.medianBlur(flow_y, 3)
            flow_filtered = np.dstack((flow_x_filtered, flow_y_filtered))
        else:
            flow_filtered = flow
        
        # --- Method 4: Patch-based Correction for Extreme Flow ---
        if enable_patch_based:
            flow_corrected = flow_filtered.copy()
            for by in range(0, h, block_size):
                for bx in range(0, w, block_size):
                    # Define block region (handle edges)
                    y1, y2 = by, min(by + block_size, h)
                    x1, x2 = bx, min(bx + block_size, w)
                    block_flow = flow_filtered[y1:y2, x1:x2]
                    mag = np.sqrt(block_flow[..., 0]**2 + block_flow[..., 1]**2)
                    mean_mag = np.mean(mag)
                    if mean_mag > patch_threshold:
                        # Use patch matching to recalc flow for this block.
                        patch = prev_gray[y1:y2, x1:x2]
                        sx1 = max(x1 - search_margin, 0)
                        sy1 = max(by - search_margin, 0)
                        sx2 = min(x2 + search_margin, w)
                        sy2 = min(y2 + search_margin, h)
                        search_region = curr_gray[sy1:sy2, sx1:sx2]
                        if search_region.shape[0] < patch.shape[0] or search_region.shape[1] < patch.shape[1]:
                            continue
                        res = cv2.matchTemplate(search_region, patch, cv2.TM_SQDIFF_NORMED)
                        _, _, min_loc, _ = cv2.minMaxLoc(res)
                        best_x = sx1 + min_loc[0]
                        best_y = sy1 + min_loc[1]
                        offset_x = best_x - x1
                        offset_y = best_y - by
                        flow_corrected[y1:y2, x1:x2, 0] = offset_x
                        flow_corrected[y1:y2, x1:x2, 1] = offset_y
        else:
            flow_corrected = flow_filtered
        
        # Compute mapping coordinates.
        grid_x, grid_y = np.meshgrid(np.arange(w), np.arange(h))
        map_x = grid_x + flow_corrected[..., 0]
        map_y = grid_y + flow_corrected[..., 1]
        map_x = np.clip(map_x, 0, w - 1).astype(np.float32)
        map_y = np.clip(map_y, 0, h - 1).astype(np.float32)
        
        # Warp the previous styled frame.
        warped_styled = cv2.remap(styled_frames[-1], map_x, map_y, interpolation=cv2.INTER_LINEAR)
        
        # --- Method 2: Temporal Reset/Re-anchoring ---
        if enable_temporal_reset and (i % reset_interval == 0):
            warped_styled = cv2.addWeighted(warped_styled, 0.7, original_styled, 0.3, 0)
        
        # --- Method 5: Sharpening Post-Warping ---
        if enable_sharpening:
            kernel = np.array([[0, -1, 0],
                               [-1, 5, -1],
                               [0, -1, 0]], dtype=np.float32)
            warped_styled = cv2.filter2D(warped_styled, -1, kernel)
        
        styled_frames.append(warped_styled)
        prev_gray = curr_gray

    print(f"Propagated style to {len(styled_frames)} frames.")
    sample_frame = styled_frames[len(styled_frames) // 2]
    print(f"Sample styled frame mean intensity: {np.mean(sample_frame):.2f}")
    return styled_frames

def save_video_cv2(frames, output_path, fps=30):
    """
    Saves a list of frames as a video using OpenCV.
    """
    h, w, _ = frames[0].shape
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    writer = cv2.VideoWriter(output_path, fourcc, fps, (w, h))
    for frame in frames:
        writer.write(frame)
    writer.release()
    size = os.path.getsize(output_path)
    print(f"Intermediate video saved to {output_path} (size: {size} bytes)")

def process_video(video_file, style_image_file, fps=30, target_width=0, target_height=0,
                  enable_temporal_reset=True,
                  enable_median_filtering=True,
                  enable_patch_based=True,
                  enable_sharpening=True):
    """
    Processes the input video by applying the style image via optical flow propagation,
    with optional corrections (temporal reset, median filtering, patch-based correction, sharpening).
    Optionally downscale the video and style image to the specified resolution.
    Then re-encodes the video with FFmpeg for web compatibility.
    
    Parameters:
      - video_file: The input video file.
      - style_image_file: The stylized keyframe image.
      - fps: Output frames per second.
      - target_width: Target width for downscaling (0 for original).
      - target_height: Target height for downscaling (0 for original).
      - enable_temporal_reset: Boolean flag for temporal reset.
      - enable_median_filtering: Boolean flag for median filtering of flow.
      - enable_patch_based: Boolean flag for patch-based correction.
      - enable_sharpening: Boolean flag for sharpening post-warp.
      
    Returns:
      - Path to the final output video.
    """
    # Get the video file path.
    video_path = video_file if isinstance(video_file, str) else video_file["name"]

    # Process the style image input.
    if isinstance(style_image_file, str):
        style_image_path = style_image_file
    elif isinstance(style_image_file, dict) and "name" in style_image_file:
        style_image_path = style_image_file["name"]
    elif isinstance(style_image_file, np.ndarray):
        tmp_style = os.path.join(tempfile.gettempdir(), "temp_style_image.jpeg")
        cv2.imwrite(tmp_style, cv2.cvtColor(style_image_file, cv2.COLOR_RGB2BGR))
        style_image_path = tmp_style
    else:
        return "Error: Unsupported style image format."

    # Extract frames from the video.
    frames = extract_frames(video_path)
    if not frames:
        return "Error: No frames extracted from the video."

    original_h, original_w = frames[0].shape[:2]
    print(f"Original video resolution: {original_w}x{original_h}")

    # Downscale if target dimensions are provided.
    if target_width > 0 and target_height > 0:
        print(f"Downscaling frames to resolution: {target_width}x{target_height}")
        frames = [cv2.resize(frame, (target_width, target_height)) for frame in frames]
    else:
        print("No downscaling applied. Using original resolution.")

    # Propagate style with the selected corrections.
    styled_frames = apply_style_propagation(frames, style_image_path,
                                            enable_temporal_reset=enable_temporal_reset,
                                            enable_median_filtering=enable_median_filtering,
                                            enable_patch_based=enable_patch_based,
                                            enable_sharpening=enable_sharpening)

    # Save intermediate video using OpenCV to a named temporary file.
    temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
    temp_video_file.close()
    temp_video_path = temp_video_file.name
    save_video_cv2(styled_frames, temp_video_path, fps=fps)

    # Re-encode the video using FFmpeg for browser compatibility.
    output_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
    output_video_file.close()
    output_video_path = output_video_file.name

    try:
        (
            ffmpeg
            .input(temp_video_path)
            .output(output_video_path, vcodec='libx264', pix_fmt='yuv420p', r=fps)
            .run(overwrite_output=True, quiet=True)
        )
    except ffmpeg.Error as e:
        print("FFmpeg error:", e)
        return "Error during video re-encoding."

    final_size = os.path.getsize(output_video_path)
    print(f"Output video saved to {output_video_path} (size: {final_size} bytes)")
    if final_size == 0:
        return "Error: Output video file is empty."

    # Clean up the intermediate file.
    os.remove(temp_video_path)

    return output_video_path

iface = gr.Interface(
    fn=process_video,
    inputs=[
        gr.Video(label="Input Video (v.mp4)"),
        gr.Image(label="Stylized Keyframe (a.jpeg)"),
        gr.Slider(minimum=1, maximum=60, step=1, value=30, label="Output FPS"),
        gr.Slider(minimum=0, maximum=1920, step=1, value=0, label="Target Width (0 for original)"),
        gr.Slider(minimum=0, maximum=1080, step=1, value=0, label="Target Height (0 for original)"),
        gr.Checkbox(label="Enable Temporal Reset", value=True),
        gr.Checkbox(label="Enable Median Filtering", value=True),
        gr.Checkbox(label="Enable Patch-Based Correction", value=True),
        gr.Checkbox(label="Enable Sharpening", value=True)
    ],
    outputs=gr.Video(label="Styled Video"),
    title="Optical Flow Style Propagation with Corrections",
    description=(
        "Upload a video and a stylized keyframe image. Optionally downscale to a target resolution.\n"
        "You can enable/disable the following corrections:\n"
        "• Temporal Reset/Re-anchoring\n"
        "• Median Filtering of Flow\n"
        "• Patch-Based Correction for Extreme Flow\n"
        "• Sharpening Post-Warping\n"
        "The output video is re-encoded for web compatibility."
    )
)

if __name__ == "__main__":
    iface.launch(share=True)