Spaces:
Running
on
Zero
Running
on
Zero
# By lllyasviel | |
import torch | |
cpu = torch.device('cpu') | |
gpu = torch.device(f'cuda:{torch.cuda.current_device()}') | |
gpu_complete_modules = [] | |
class DynamicSwapInstaller: | |
def _install_module(module: torch.nn.Module, **kwargs): | |
original_class = module.__class__ | |
module.__dict__['forge_backup_original_class'] = original_class | |
def hacked_get_attr(self, name: str): | |
if '_parameters' in self.__dict__: | |
_parameters = self.__dict__['_parameters'] | |
if name in _parameters: | |
p = _parameters[name] | |
if p is None: | |
return None | |
if p.__class__ == torch.nn.Parameter: | |
return torch.nn.Parameter(p.to(**kwargs), requires_grad=p.requires_grad) | |
else: | |
return p.to(**kwargs) | |
if '_buffers' in self.__dict__: | |
_buffers = self.__dict__['_buffers'] | |
if name in _buffers: | |
return _buffers[name].to(**kwargs) | |
return super(original_class, self).__getattr__(name) | |
module.__class__ = type('DynamicSwap_' + original_class.__name__, (original_class,), { | |
'__getattr__': hacked_get_attr, | |
}) | |
return | |
def _uninstall_module(module: torch.nn.Module): | |
if 'forge_backup_original_class' in module.__dict__: | |
module.__class__ = module.__dict__.pop('forge_backup_original_class') | |
return | |
def install_model(model: torch.nn.Module, **kwargs): | |
for m in model.modules(): | |
DynamicSwapInstaller._install_module(m, **kwargs) | |
return | |
def uninstall_model(model: torch.nn.Module): | |
for m in model.modules(): | |
DynamicSwapInstaller._uninstall_module(m) | |
return | |
def fake_diffusers_current_device(model: torch.nn.Module, target_device: torch.device): | |
if hasattr(model, 'scale_shift_table'): | |
model.scale_shift_table.data = model.scale_shift_table.data.to(target_device) | |
return | |
for k, p in model.named_modules(): | |
if hasattr(p, 'weight'): | |
p.to(target_device) | |
return | |
def get_cuda_free_memory_gb(device=None): | |
if device is None: | |
device = gpu | |
memory_stats = torch.cuda.memory_stats(device) | |
bytes_active = memory_stats['active_bytes.all.current'] | |
bytes_reserved = memory_stats['reserved_bytes.all.current'] | |
bytes_free_cuda, _ = torch.cuda.mem_get_info(device) | |
bytes_inactive_reserved = bytes_reserved - bytes_active | |
bytes_total_available = bytes_free_cuda + bytes_inactive_reserved | |
return bytes_total_available / (1024 ** 3) | |
def move_model_to_device_with_memory_preservation(model, target_device, preserved_memory_gb=0): | |
print(f'Moving {model.__class__.__name__} to {target_device} with preserved memory: {preserved_memory_gb} GB') | |
for m in model.modules(): | |
if get_cuda_free_memory_gb(target_device) <= preserved_memory_gb: | |
torch.cuda.empty_cache() | |
return | |
if hasattr(m, 'weight'): | |
m.to(device=target_device) | |
model.to(device=target_device) | |
torch.cuda.empty_cache() | |
return | |
def offload_model_from_device_for_memory_preservation(model, target_device, preserved_memory_gb=0): | |
print(f'Offloading {model.__class__.__name__} from {target_device} to preserve memory: {preserved_memory_gb} GB') | |
for m in model.modules(): | |
if get_cuda_free_memory_gb(target_device) >= preserved_memory_gb: | |
torch.cuda.empty_cache() | |
return | |
if hasattr(m, 'weight'): | |
m.to(device=cpu) | |
model.to(device=cpu) | |
torch.cuda.empty_cache() | |
return | |
def unload_complete_models(*args): | |
for m in gpu_complete_modules + list(args): | |
m.to(device=cpu) | |
print(f'Unloaded {m.__class__.__name__} as complete.') | |
gpu_complete_modules.clear() | |
torch.cuda.empty_cache() | |
return | |
def load_model_as_complete(model, target_device, unload=True): | |
if unload: | |
unload_complete_models() | |
model.to(device=target_device) | |
print(f'Loaded {model.__class__.__name__} to {target_device} as complete.') | |
gpu_complete_modules.append(model) | |
return | |