Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
a252b0c
1
Parent(s):
0fdfdbb
Add initial implementation of helper functions and requirements for diffusers
Browse files- .gitignore +174 -0
- app.py +401 -0
- diffusers_helper/bucket_tools.py +30 -0
- diffusers_helper/clip_vision.py +12 -0
- diffusers_helper/dit_common.py +53 -0
- diffusers_helper/gradio/progress_bar.py +86 -0
- diffusers_helper/hf_login.py +21 -0
- diffusers_helper/hunyuan.py +111 -0
- diffusers_helper/k_diffusion/uni_pc_fm.py +141 -0
- diffusers_helper/k_diffusion/wrapper.py +51 -0
- diffusers_helper/memory.py +134 -0
- diffusers_helper/models/hunyuan_video_packed.py +1032 -0
- diffusers_helper/pipelines/k_diffusion_hunyuan.py +120 -0
- diffusers_helper/thread_utils.py +76 -0
- diffusers_helper/utils.py +613 -0
- requirements.txt +15 -0
.gitignore
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# UV
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
#uv.lock
|
102 |
+
|
103 |
+
# poetry
|
104 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
105 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
106 |
+
# commonly ignored for libraries.
|
107 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
108 |
+
#poetry.lock
|
109 |
+
|
110 |
+
# pdm
|
111 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
112 |
+
#pdm.lock
|
113 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
114 |
+
# in version control.
|
115 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
116 |
+
.pdm.toml
|
117 |
+
.pdm-python
|
118 |
+
.pdm-build/
|
119 |
+
|
120 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
121 |
+
__pypackages__/
|
122 |
+
|
123 |
+
# Celery stuff
|
124 |
+
celerybeat-schedule
|
125 |
+
celerybeat.pid
|
126 |
+
|
127 |
+
# SageMath parsed files
|
128 |
+
*.sage.py
|
129 |
+
|
130 |
+
# Environments
|
131 |
+
.env
|
132 |
+
.venv
|
133 |
+
env/
|
134 |
+
venv/
|
135 |
+
ENV/
|
136 |
+
env.bak/
|
137 |
+
venv.bak/
|
138 |
+
|
139 |
+
# Spyder project settings
|
140 |
+
.spyderproject
|
141 |
+
.spyproject
|
142 |
+
|
143 |
+
# Rope project settings
|
144 |
+
.ropeproject
|
145 |
+
|
146 |
+
# mkdocs documentation
|
147 |
+
/site
|
148 |
+
|
149 |
+
# mypy
|
150 |
+
.mypy_cache/
|
151 |
+
.dmypy.json
|
152 |
+
dmypy.json
|
153 |
+
|
154 |
+
# Pyre type checker
|
155 |
+
.pyre/
|
156 |
+
|
157 |
+
# pytype static type analyzer
|
158 |
+
.pytype/
|
159 |
+
|
160 |
+
# Cython debug symbols
|
161 |
+
cython_debug/
|
162 |
+
|
163 |
+
# PyCharm
|
164 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
165 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
166 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
167 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
168 |
+
#.idea/
|
169 |
+
|
170 |
+
# Ruff stuff:
|
171 |
+
.ruff_cache/
|
172 |
+
|
173 |
+
# PyPI configuration file
|
174 |
+
.pypirc
|
app.py
ADDED
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import os
|
3 |
+
|
4 |
+
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import torch
|
8 |
+
import traceback
|
9 |
+
import einops
|
10 |
+
import numpy as np
|
11 |
+
import argparse
|
12 |
+
|
13 |
+
from PIL import Image
|
14 |
+
from diffusers import AutoencoderKLHunyuanVideo
|
15 |
+
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
|
16 |
+
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
|
17 |
+
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, generate_timestamp
|
18 |
+
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
19 |
+
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
20 |
+
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
|
21 |
+
from diffusers_helper.thread_utils import AsyncStream, async_run
|
22 |
+
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
23 |
+
from transformers import SiglipImageProcessor, SiglipVisionModel
|
24 |
+
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
25 |
+
from diffusers_helper.bucket_tools import find_nearest_bucket
|
26 |
+
|
27 |
+
|
28 |
+
parser = argparse.ArgumentParser()
|
29 |
+
parser.add_argument('--share', action='store_true')
|
30 |
+
parser.add_argument("--server", type=str, default='0.0.0.0')
|
31 |
+
parser.add_argument("--port", type=int, required=False)
|
32 |
+
parser.add_argument("--inbrowser", action='store_true')
|
33 |
+
args = parser.parse_args()
|
34 |
+
|
35 |
+
# for win desktop probably use --server 127.0.0.1 --inbrowser
|
36 |
+
# For linux server probably use --server 127.0.0.1 or do not use any cmd flags
|
37 |
+
|
38 |
+
print(args)
|
39 |
+
|
40 |
+
free_mem_gb = get_cuda_free_memory_gb(gpu)
|
41 |
+
high_vram = free_mem_gb > 60
|
42 |
+
|
43 |
+
print(f'Free VRAM {free_mem_gb} GB')
|
44 |
+
print(f'High-VRAM Mode: {high_vram}')
|
45 |
+
|
46 |
+
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
|
47 |
+
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
|
48 |
+
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
|
49 |
+
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
|
50 |
+
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
|
51 |
+
|
52 |
+
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
|
53 |
+
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
|
54 |
+
|
55 |
+
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=torch.bfloat16).cpu()
|
56 |
+
|
57 |
+
vae.eval()
|
58 |
+
text_encoder.eval()
|
59 |
+
text_encoder_2.eval()
|
60 |
+
image_encoder.eval()
|
61 |
+
transformer.eval()
|
62 |
+
|
63 |
+
if not high_vram:
|
64 |
+
vae.enable_slicing()
|
65 |
+
vae.enable_tiling()
|
66 |
+
|
67 |
+
transformer.high_quality_fp32_output_for_inference = True
|
68 |
+
print('transformer.high_quality_fp32_output_for_inference = True')
|
69 |
+
|
70 |
+
transformer.to(dtype=torch.bfloat16)
|
71 |
+
vae.to(dtype=torch.float16)
|
72 |
+
image_encoder.to(dtype=torch.float16)
|
73 |
+
text_encoder.to(dtype=torch.float16)
|
74 |
+
text_encoder_2.to(dtype=torch.float16)
|
75 |
+
|
76 |
+
vae.requires_grad_(False)
|
77 |
+
text_encoder.requires_grad_(False)
|
78 |
+
text_encoder_2.requires_grad_(False)
|
79 |
+
image_encoder.requires_grad_(False)
|
80 |
+
transformer.requires_grad_(False)
|
81 |
+
|
82 |
+
if not high_vram:
|
83 |
+
# DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
|
84 |
+
DynamicSwapInstaller.install_model(transformer, device=gpu)
|
85 |
+
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
|
86 |
+
else:
|
87 |
+
text_encoder.to(gpu)
|
88 |
+
text_encoder_2.to(gpu)
|
89 |
+
image_encoder.to(gpu)
|
90 |
+
vae.to(gpu)
|
91 |
+
transformer.to(gpu)
|
92 |
+
|
93 |
+
stream = AsyncStream()
|
94 |
+
|
95 |
+
outputs_folder = './outputs/'
|
96 |
+
os.makedirs(outputs_folder, exist_ok=True)
|
97 |
+
|
98 |
+
|
99 |
+
@torch.no_grad()
|
100 |
+
def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
|
101 |
+
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
102 |
+
total_latent_sections = int(max(round(total_latent_sections), 1))
|
103 |
+
|
104 |
+
job_id = generate_timestamp()
|
105 |
+
|
106 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
107 |
+
|
108 |
+
try:
|
109 |
+
# Clean GPU
|
110 |
+
if not high_vram:
|
111 |
+
unload_complete_models(
|
112 |
+
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
113 |
+
)
|
114 |
+
|
115 |
+
# Text encoding
|
116 |
+
|
117 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
|
118 |
+
|
119 |
+
if not high_vram:
|
120 |
+
fake_diffusers_current_device(text_encoder, gpu) # since we only encode one text - that is one model move and one encode, offload is same time consumption since it is also one load and one encode.
|
121 |
+
load_model_as_complete(text_encoder_2, target_device=gpu)
|
122 |
+
|
123 |
+
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
124 |
+
|
125 |
+
if cfg == 1:
|
126 |
+
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
|
127 |
+
else:
|
128 |
+
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
129 |
+
|
130 |
+
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
131 |
+
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
132 |
+
|
133 |
+
# Processing input image
|
134 |
+
|
135 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
|
136 |
+
|
137 |
+
H, W, C = input_image.shape
|
138 |
+
height, width = find_nearest_bucket(H, W, resolution=640)
|
139 |
+
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
140 |
+
|
141 |
+
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
142 |
+
|
143 |
+
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
144 |
+
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
145 |
+
|
146 |
+
# VAE encoding
|
147 |
+
|
148 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
|
149 |
+
|
150 |
+
if not high_vram:
|
151 |
+
load_model_as_complete(vae, target_device=gpu)
|
152 |
+
|
153 |
+
start_latent = vae_encode(input_image_pt, vae)
|
154 |
+
|
155 |
+
# CLIP Vision
|
156 |
+
|
157 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
158 |
+
|
159 |
+
if not high_vram:
|
160 |
+
load_model_as_complete(image_encoder, target_device=gpu)
|
161 |
+
|
162 |
+
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
|
163 |
+
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
164 |
+
|
165 |
+
# Dtype
|
166 |
+
|
167 |
+
llama_vec = llama_vec.to(transformer.dtype)
|
168 |
+
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
169 |
+
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
|
170 |
+
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
171 |
+
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
172 |
+
|
173 |
+
# Sampling
|
174 |
+
|
175 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
|
176 |
+
|
177 |
+
rnd = torch.Generator("cpu").manual_seed(seed)
|
178 |
+
num_frames = latent_window_size * 4 - 3
|
179 |
+
|
180 |
+
history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu()
|
181 |
+
history_pixels = None
|
182 |
+
total_generated_latent_frames = 0
|
183 |
+
|
184 |
+
latent_paddings = reversed(range(total_latent_sections))
|
185 |
+
|
186 |
+
if total_latent_sections > 4:
|
187 |
+
# In theory the latent_paddings should follow the above sequence, but it seems that duplicating some
|
188 |
+
# items looks better than expanding it when total_latent_sections > 4
|
189 |
+
# One can try to remove below trick and just
|
190 |
+
# use `latent_paddings = list(reversed(range(total_latent_sections)))` to compare
|
191 |
+
latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
|
192 |
+
|
193 |
+
for latent_padding in latent_paddings:
|
194 |
+
is_last_section = latent_padding == 0
|
195 |
+
latent_padding_size = latent_padding * latent_window_size
|
196 |
+
|
197 |
+
if stream.input_queue.top() == 'end':
|
198 |
+
stream.output_queue.push(('end', None))
|
199 |
+
return
|
200 |
+
|
201 |
+
print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}')
|
202 |
+
|
203 |
+
indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
|
204 |
+
clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
|
205 |
+
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
|
206 |
+
|
207 |
+
clean_latents_pre = start_latent.to(history_latents)
|
208 |
+
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2)
|
209 |
+
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
|
210 |
+
|
211 |
+
if not high_vram:
|
212 |
+
unload_complete_models()
|
213 |
+
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
|
214 |
+
|
215 |
+
if use_teacache:
|
216 |
+
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
217 |
+
else:
|
218 |
+
transformer.initialize_teacache(enable_teacache=False)
|
219 |
+
|
220 |
+
def callback(d):
|
221 |
+
preview = d['denoised']
|
222 |
+
preview = vae_decode_fake(preview)
|
223 |
+
|
224 |
+
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
225 |
+
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
226 |
+
|
227 |
+
if stream.input_queue.top() == 'end':
|
228 |
+
stream.output_queue.push(('end', None))
|
229 |
+
raise KeyboardInterrupt('User ends the task.')
|
230 |
+
|
231 |
+
current_step = d['i'] + 1
|
232 |
+
percentage = int(100.0 * current_step / steps)
|
233 |
+
hint = f'Sampling {current_step}/{steps}'
|
234 |
+
desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...'
|
235 |
+
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
|
236 |
+
return
|
237 |
+
|
238 |
+
generated_latents = sample_hunyuan(
|
239 |
+
transformer=transformer,
|
240 |
+
sampler='unipc',
|
241 |
+
width=width,
|
242 |
+
height=height,
|
243 |
+
frames=num_frames,
|
244 |
+
real_guidance_scale=cfg,
|
245 |
+
distilled_guidance_scale=gs,
|
246 |
+
guidance_rescale=rs,
|
247 |
+
# shift=3.0,
|
248 |
+
num_inference_steps=steps,
|
249 |
+
generator=rnd,
|
250 |
+
prompt_embeds=llama_vec,
|
251 |
+
prompt_embeds_mask=llama_attention_mask,
|
252 |
+
prompt_poolers=clip_l_pooler,
|
253 |
+
negative_prompt_embeds=llama_vec_n,
|
254 |
+
negative_prompt_embeds_mask=llama_attention_mask_n,
|
255 |
+
negative_prompt_poolers=clip_l_pooler_n,
|
256 |
+
device=gpu,
|
257 |
+
dtype=torch.bfloat16,
|
258 |
+
image_embeddings=image_encoder_last_hidden_state,
|
259 |
+
latent_indices=latent_indices,
|
260 |
+
clean_latents=clean_latents,
|
261 |
+
clean_latent_indices=clean_latent_indices,
|
262 |
+
clean_latents_2x=clean_latents_2x,
|
263 |
+
clean_latent_2x_indices=clean_latent_2x_indices,
|
264 |
+
clean_latents_4x=clean_latents_4x,
|
265 |
+
clean_latent_4x_indices=clean_latent_4x_indices,
|
266 |
+
callback=callback,
|
267 |
+
)
|
268 |
+
|
269 |
+
if is_last_section:
|
270 |
+
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
|
271 |
+
|
272 |
+
total_generated_latent_frames += int(generated_latents.shape[2])
|
273 |
+
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
|
274 |
+
|
275 |
+
if not high_vram:
|
276 |
+
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
|
277 |
+
load_model_as_complete(vae, target_device=gpu)
|
278 |
+
|
279 |
+
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
|
280 |
+
|
281 |
+
if history_pixels is None:
|
282 |
+
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
283 |
+
else:
|
284 |
+
section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
|
285 |
+
overlapped_frames = latent_window_size * 4 - 3
|
286 |
+
|
287 |
+
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
|
288 |
+
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
|
289 |
+
|
290 |
+
if not high_vram:
|
291 |
+
unload_complete_models()
|
292 |
+
|
293 |
+
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
|
294 |
+
|
295 |
+
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
|
296 |
+
|
297 |
+
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
|
298 |
+
|
299 |
+
stream.output_queue.push(('file', output_filename))
|
300 |
+
|
301 |
+
if is_last_section:
|
302 |
+
break
|
303 |
+
except:
|
304 |
+
traceback.print_exc()
|
305 |
+
|
306 |
+
if not high_vram:
|
307 |
+
unload_complete_models(
|
308 |
+
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
309 |
+
)
|
310 |
+
|
311 |
+
stream.output_queue.push(('end', None))
|
312 |
+
return
|
313 |
+
|
314 |
+
@spaces.GPU()
|
315 |
+
def process(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
|
316 |
+
global stream
|
317 |
+
assert input_image is not None, 'No input image!'
|
318 |
+
|
319 |
+
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
320 |
+
|
321 |
+
stream = AsyncStream()
|
322 |
+
|
323 |
+
async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)
|
324 |
+
|
325 |
+
output_filename = None
|
326 |
+
|
327 |
+
while True:
|
328 |
+
flag, data = stream.output_queue.next()
|
329 |
+
|
330 |
+
if flag == 'file':
|
331 |
+
output_filename = data
|
332 |
+
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
|
333 |
+
|
334 |
+
if flag == 'progress':
|
335 |
+
preview, desc, html = data
|
336 |
+
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
337 |
+
|
338 |
+
if flag == 'end':
|
339 |
+
yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
|
340 |
+
break
|
341 |
+
|
342 |
+
|
343 |
+
def end_process():
|
344 |
+
stream.input_queue.push('end')
|
345 |
+
|
346 |
+
|
347 |
+
quick_prompts = [
|
348 |
+
'The girl dances gracefully, with clear movements, full of charm.',
|
349 |
+
'A character doing some simple body movements.',
|
350 |
+
]
|
351 |
+
quick_prompts = [[x] for x in quick_prompts]
|
352 |
+
|
353 |
+
|
354 |
+
css = make_progress_bar_css()
|
355 |
+
block = gr.Blocks(css=css).queue()
|
356 |
+
with block:
|
357 |
+
gr.Markdown('# FramePack')
|
358 |
+
with gr.Row():
|
359 |
+
with gr.Column():
|
360 |
+
input_image = gr.Image(sources='upload', type="numpy", label="Image", height=320)
|
361 |
+
prompt = gr.Textbox(label="Prompt", value='')
|
362 |
+
example_quick_prompts = gr.Dataset(samples=quick_prompts, label='Quick List', samples_per_page=1000, components=[prompt])
|
363 |
+
example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)
|
364 |
+
|
365 |
+
with gr.Row():
|
366 |
+
start_button = gr.Button(value="Start Generation")
|
367 |
+
end_button = gr.Button(value="End Generation", interactive=False)
|
368 |
+
|
369 |
+
with gr.Group():
|
370 |
+
use_teacache = gr.Checkbox(label='Use TeaCache', value=True, info='Faster speed, but often makes hands and fingers slightly worse.')
|
371 |
+
|
372 |
+
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False) # Not used
|
373 |
+
seed = gr.Number(label="Seed", value=31337, precision=0)
|
374 |
+
|
375 |
+
total_second_length = gr.Slider(label="Total Video Length (Seconds)", minimum=1, maximum=120, value=5, step=0.1)
|
376 |
+
latent_window_size = gr.Slider(label="Latent Window Size", minimum=1, maximum=33, value=9, step=1, visible=False) # Should not change
|
377 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Changing this value is not recommended.')
|
378 |
+
|
379 |
+
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, visible=False) # Should not change
|
380 |
+
gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='Changing this value is not recommended.')
|
381 |
+
rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01, visible=False) # Should not change
|
382 |
+
|
383 |
+
gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
|
384 |
+
|
385 |
+
with gr.Column():
|
386 |
+
preview_image = gr.Image(label="Next Latents", height=200, visible=False)
|
387 |
+
result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
|
388 |
+
gr.Markdown('Note that the ending actions will be generated before the starting actions due to the inverted sampling. If the starting action is not in the video, you just need to wait, and it will be generated later.')
|
389 |
+
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
|
390 |
+
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
391 |
+
ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache]
|
392 |
+
start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
|
393 |
+
end_button.click(fn=end_process)
|
394 |
+
|
395 |
+
|
396 |
+
block.launch(
|
397 |
+
server_name=args.server,
|
398 |
+
server_port=args.port,
|
399 |
+
share=args.share,
|
400 |
+
inbrowser=args.inbrowser,
|
401 |
+
)
|
diffusers_helper/bucket_tools.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
bucket_options = {
|
2 |
+
640: [
|
3 |
+
(416, 960),
|
4 |
+
(448, 864),
|
5 |
+
(480, 832),
|
6 |
+
(512, 768),
|
7 |
+
(544, 704),
|
8 |
+
(576, 672),
|
9 |
+
(608, 640),
|
10 |
+
(640, 608),
|
11 |
+
(672, 576),
|
12 |
+
(704, 544),
|
13 |
+
(768, 512),
|
14 |
+
(832, 480),
|
15 |
+
(864, 448),
|
16 |
+
(960, 416),
|
17 |
+
],
|
18 |
+
}
|
19 |
+
|
20 |
+
|
21 |
+
def find_nearest_bucket(h, w, resolution=640):
|
22 |
+
min_metric = float('inf')
|
23 |
+
best_bucket = None
|
24 |
+
for (bucket_h, bucket_w) in bucket_options[resolution]:
|
25 |
+
metric = abs(h * bucket_w - w * bucket_h)
|
26 |
+
if metric <= min_metric:
|
27 |
+
min_metric = metric
|
28 |
+
best_bucket = (bucket_h, bucket_w)
|
29 |
+
return best_bucket
|
30 |
+
|
diffusers_helper/clip_vision.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
def hf_clip_vision_encode(image, feature_extractor, image_encoder):
|
5 |
+
assert isinstance(image, np.ndarray)
|
6 |
+
assert image.ndim == 3 and image.shape[2] == 3
|
7 |
+
assert image.dtype == np.uint8
|
8 |
+
|
9 |
+
preprocessed = feature_extractor.preprocess(images=image, return_tensors="pt").to(device=image_encoder.device, dtype=image_encoder.dtype)
|
10 |
+
image_encoder_output = image_encoder(**preprocessed)
|
11 |
+
|
12 |
+
return image_encoder_output
|
diffusers_helper/dit_common.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import accelerate.accelerator
|
3 |
+
|
4 |
+
from diffusers.models.normalization import RMSNorm, LayerNorm, FP32LayerNorm, AdaLayerNormContinuous
|
5 |
+
|
6 |
+
|
7 |
+
accelerate.accelerator.convert_outputs_to_fp32 = lambda x: x
|
8 |
+
|
9 |
+
|
10 |
+
def LayerNorm_forward(self, x):
|
11 |
+
return torch.nn.functional.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps).to(x)
|
12 |
+
|
13 |
+
|
14 |
+
LayerNorm.forward = LayerNorm_forward
|
15 |
+
torch.nn.LayerNorm.forward = LayerNorm_forward
|
16 |
+
|
17 |
+
|
18 |
+
def FP32LayerNorm_forward(self, x):
|
19 |
+
origin_dtype = x.dtype
|
20 |
+
return torch.nn.functional.layer_norm(
|
21 |
+
x.float(),
|
22 |
+
self.normalized_shape,
|
23 |
+
self.weight.float() if self.weight is not None else None,
|
24 |
+
self.bias.float() if self.bias is not None else None,
|
25 |
+
self.eps,
|
26 |
+
).to(origin_dtype)
|
27 |
+
|
28 |
+
|
29 |
+
FP32LayerNorm.forward = FP32LayerNorm_forward
|
30 |
+
|
31 |
+
|
32 |
+
def RMSNorm_forward(self, hidden_states):
|
33 |
+
input_dtype = hidden_states.dtype
|
34 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
35 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
|
36 |
+
|
37 |
+
if self.weight is None:
|
38 |
+
return hidden_states.to(input_dtype)
|
39 |
+
|
40 |
+
return hidden_states.to(input_dtype) * self.weight.to(input_dtype)
|
41 |
+
|
42 |
+
|
43 |
+
RMSNorm.forward = RMSNorm_forward
|
44 |
+
|
45 |
+
|
46 |
+
def AdaLayerNormContinuous_forward(self, x, conditioning_embedding):
|
47 |
+
emb = self.linear(self.silu(conditioning_embedding))
|
48 |
+
scale, shift = emb.chunk(2, dim=1)
|
49 |
+
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
|
50 |
+
return x
|
51 |
+
|
52 |
+
|
53 |
+
AdaLayerNormContinuous.forward = AdaLayerNormContinuous_forward
|
diffusers_helper/gradio/progress_bar.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
progress_html = '''
|
2 |
+
<div class="loader-container">
|
3 |
+
<div class="loader"></div>
|
4 |
+
<div class="progress-container">
|
5 |
+
<progress value="*number*" max="100"></progress>
|
6 |
+
</div>
|
7 |
+
<span>*text*</span>
|
8 |
+
</div>
|
9 |
+
'''
|
10 |
+
|
11 |
+
css = '''
|
12 |
+
.loader-container {
|
13 |
+
display: flex; /* Use flex to align items horizontally */
|
14 |
+
align-items: center; /* Center items vertically within the container */
|
15 |
+
white-space: nowrap; /* Prevent line breaks within the container */
|
16 |
+
}
|
17 |
+
|
18 |
+
.loader {
|
19 |
+
border: 8px solid #f3f3f3; /* Light grey */
|
20 |
+
border-top: 8px solid #3498db; /* Blue */
|
21 |
+
border-radius: 50%;
|
22 |
+
width: 30px;
|
23 |
+
height: 30px;
|
24 |
+
animation: spin 2s linear infinite;
|
25 |
+
}
|
26 |
+
|
27 |
+
@keyframes spin {
|
28 |
+
0% { transform: rotate(0deg); }
|
29 |
+
100% { transform: rotate(360deg); }
|
30 |
+
}
|
31 |
+
|
32 |
+
/* Style the progress bar */
|
33 |
+
progress {
|
34 |
+
appearance: none; /* Remove default styling */
|
35 |
+
height: 20px; /* Set the height of the progress bar */
|
36 |
+
border-radius: 5px; /* Round the corners of the progress bar */
|
37 |
+
background-color: #f3f3f3; /* Light grey background */
|
38 |
+
width: 100%;
|
39 |
+
vertical-align: middle !important;
|
40 |
+
}
|
41 |
+
|
42 |
+
/* Style the progress bar container */
|
43 |
+
.progress-container {
|
44 |
+
margin-left: 20px;
|
45 |
+
margin-right: 20px;
|
46 |
+
flex-grow: 1; /* Allow the progress container to take up remaining space */
|
47 |
+
}
|
48 |
+
|
49 |
+
/* Set the color of the progress bar fill */
|
50 |
+
progress::-webkit-progress-value {
|
51 |
+
background-color: #3498db; /* Blue color for the fill */
|
52 |
+
}
|
53 |
+
|
54 |
+
progress::-moz-progress-bar {
|
55 |
+
background-color: #3498db; /* Blue color for the fill in Firefox */
|
56 |
+
}
|
57 |
+
|
58 |
+
/* Style the text on the progress bar */
|
59 |
+
progress::after {
|
60 |
+
content: attr(value '%'); /* Display the progress value followed by '%' */
|
61 |
+
position: absolute;
|
62 |
+
top: 50%;
|
63 |
+
left: 50%;
|
64 |
+
transform: translate(-50%, -50%);
|
65 |
+
color: white; /* Set text color */
|
66 |
+
font-size: 14px; /* Set font size */
|
67 |
+
}
|
68 |
+
|
69 |
+
/* Style other texts */
|
70 |
+
.loader-container > span {
|
71 |
+
margin-left: 5px; /* Add spacing between the progress bar and the text */
|
72 |
+
}
|
73 |
+
|
74 |
+
.no-generating-animation > .generating {
|
75 |
+
display: none !important;
|
76 |
+
}
|
77 |
+
|
78 |
+
'''
|
79 |
+
|
80 |
+
|
81 |
+
def make_progress_bar_html(number, text):
|
82 |
+
return progress_html.replace('*number*', str(number)).replace('*text*', text)
|
83 |
+
|
84 |
+
|
85 |
+
def make_progress_bar_css():
|
86 |
+
return css
|
diffusers_helper/hf_login.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
|
4 |
+
def login(token):
|
5 |
+
from huggingface_hub import login
|
6 |
+
import time
|
7 |
+
|
8 |
+
while True:
|
9 |
+
try:
|
10 |
+
login(token)
|
11 |
+
print('HF login ok.')
|
12 |
+
break
|
13 |
+
except Exception as e:
|
14 |
+
print(f'HF login failed: {e}. Retrying')
|
15 |
+
time.sleep(0.5)
|
16 |
+
|
17 |
+
|
18 |
+
hf_token = os.environ.get('HF_TOKEN', None)
|
19 |
+
|
20 |
+
if hf_token is not None:
|
21 |
+
login(hf_token)
|
diffusers_helper/hunyuan.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import DEFAULT_PROMPT_TEMPLATE
|
4 |
+
from diffusers_helper.utils import crop_or_pad_yield_mask
|
5 |
+
|
6 |
+
|
7 |
+
@torch.no_grad()
|
8 |
+
def encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2, max_length=256):
|
9 |
+
assert isinstance(prompt, str)
|
10 |
+
|
11 |
+
prompt = [prompt]
|
12 |
+
|
13 |
+
# LLAMA
|
14 |
+
|
15 |
+
prompt_llama = [DEFAULT_PROMPT_TEMPLATE["template"].format(p) for p in prompt]
|
16 |
+
crop_start = DEFAULT_PROMPT_TEMPLATE["crop_start"]
|
17 |
+
|
18 |
+
llama_inputs = tokenizer(
|
19 |
+
prompt_llama,
|
20 |
+
padding="max_length",
|
21 |
+
max_length=max_length + crop_start,
|
22 |
+
truncation=True,
|
23 |
+
return_tensors="pt",
|
24 |
+
return_length=False,
|
25 |
+
return_overflowing_tokens=False,
|
26 |
+
return_attention_mask=True,
|
27 |
+
)
|
28 |
+
|
29 |
+
llama_input_ids = llama_inputs.input_ids.to(text_encoder.device)
|
30 |
+
llama_attention_mask = llama_inputs.attention_mask.to(text_encoder.device)
|
31 |
+
llama_attention_length = int(llama_attention_mask.sum())
|
32 |
+
|
33 |
+
llama_outputs = text_encoder(
|
34 |
+
input_ids=llama_input_ids,
|
35 |
+
attention_mask=llama_attention_mask,
|
36 |
+
output_hidden_states=True,
|
37 |
+
)
|
38 |
+
|
39 |
+
llama_vec = llama_outputs.hidden_states[-3][:, crop_start:llama_attention_length]
|
40 |
+
# llama_vec_remaining = llama_outputs.hidden_states[-3][:, llama_attention_length:]
|
41 |
+
llama_attention_mask = llama_attention_mask[:, crop_start:llama_attention_length]
|
42 |
+
|
43 |
+
assert torch.all(llama_attention_mask.bool())
|
44 |
+
|
45 |
+
# CLIP
|
46 |
+
|
47 |
+
clip_l_input_ids = tokenizer_2(
|
48 |
+
prompt,
|
49 |
+
padding="max_length",
|
50 |
+
max_length=77,
|
51 |
+
truncation=True,
|
52 |
+
return_overflowing_tokens=False,
|
53 |
+
return_length=False,
|
54 |
+
return_tensors="pt",
|
55 |
+
).input_ids
|
56 |
+
clip_l_pooler = text_encoder_2(clip_l_input_ids.to(text_encoder_2.device), output_hidden_states=False).pooler_output
|
57 |
+
|
58 |
+
return llama_vec, clip_l_pooler
|
59 |
+
|
60 |
+
|
61 |
+
@torch.no_grad()
|
62 |
+
def vae_decode_fake(latents):
|
63 |
+
latent_rgb_factors = [
|
64 |
+
[-0.0395, -0.0331, 0.0445],
|
65 |
+
[0.0696, 0.0795, 0.0518],
|
66 |
+
[0.0135, -0.0945, -0.0282],
|
67 |
+
[0.0108, -0.0250, -0.0765],
|
68 |
+
[-0.0209, 0.0032, 0.0224],
|
69 |
+
[-0.0804, -0.0254, -0.0639],
|
70 |
+
[-0.0991, 0.0271, -0.0669],
|
71 |
+
[-0.0646, -0.0422, -0.0400],
|
72 |
+
[-0.0696, -0.0595, -0.0894],
|
73 |
+
[-0.0799, -0.0208, -0.0375],
|
74 |
+
[0.1166, 0.1627, 0.0962],
|
75 |
+
[0.1165, 0.0432, 0.0407],
|
76 |
+
[-0.2315, -0.1920, -0.1355],
|
77 |
+
[-0.0270, 0.0401, -0.0821],
|
78 |
+
[-0.0616, -0.0997, -0.0727],
|
79 |
+
[0.0249, -0.0469, -0.1703]
|
80 |
+
] # From comfyui
|
81 |
+
|
82 |
+
latent_rgb_factors_bias = [0.0259, -0.0192, -0.0761]
|
83 |
+
|
84 |
+
weight = torch.tensor(latent_rgb_factors, device=latents.device, dtype=latents.dtype).transpose(0, 1)[:, :, None, None, None]
|
85 |
+
bias = torch.tensor(latent_rgb_factors_bias, device=latents.device, dtype=latents.dtype)
|
86 |
+
|
87 |
+
images = torch.nn.functional.conv3d(latents, weight, bias=bias, stride=1, padding=0, dilation=1, groups=1)
|
88 |
+
images = images.clamp(0.0, 1.0)
|
89 |
+
|
90 |
+
return images
|
91 |
+
|
92 |
+
|
93 |
+
@torch.no_grad()
|
94 |
+
def vae_decode(latents, vae, image_mode=False):
|
95 |
+
latents = latents / vae.config.scaling_factor
|
96 |
+
|
97 |
+
if not image_mode:
|
98 |
+
image = vae.decode(latents.to(device=vae.device, dtype=vae.dtype)).sample
|
99 |
+
else:
|
100 |
+
latents = latents.to(device=vae.device, dtype=vae.dtype).unbind(2)
|
101 |
+
image = [vae.decode(l.unsqueeze(2)).sample for l in latents]
|
102 |
+
image = torch.cat(image, dim=2)
|
103 |
+
|
104 |
+
return image
|
105 |
+
|
106 |
+
|
107 |
+
@torch.no_grad()
|
108 |
+
def vae_encode(image, vae):
|
109 |
+
latents = vae.encode(image.to(device=vae.device, dtype=vae.dtype)).latent_dist.sample()
|
110 |
+
latents = latents * vae.config.scaling_factor
|
111 |
+
return latents
|
diffusers_helper/k_diffusion/uni_pc_fm.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Better Flow Matching UniPC by Lvmin Zhang
|
2 |
+
# (c) 2025
|
3 |
+
# CC BY-SA 4.0
|
4 |
+
# Attribution-ShareAlike 4.0 International Licence
|
5 |
+
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from tqdm.auto import trange
|
10 |
+
|
11 |
+
|
12 |
+
def expand_dims(v, dims):
|
13 |
+
return v[(...,) + (None,) * (dims - 1)]
|
14 |
+
|
15 |
+
|
16 |
+
class FlowMatchUniPC:
|
17 |
+
def __init__(self, model, extra_args, variant='bh1'):
|
18 |
+
self.model = model
|
19 |
+
self.variant = variant
|
20 |
+
self.extra_args = extra_args
|
21 |
+
|
22 |
+
def model_fn(self, x, t):
|
23 |
+
return self.model(x, t, **self.extra_args)
|
24 |
+
|
25 |
+
def update_fn(self, x, model_prev_list, t_prev_list, t, order):
|
26 |
+
assert order <= len(model_prev_list)
|
27 |
+
dims = x.dim()
|
28 |
+
|
29 |
+
t_prev_0 = t_prev_list[-1]
|
30 |
+
lambda_prev_0 = - torch.log(t_prev_0)
|
31 |
+
lambda_t = - torch.log(t)
|
32 |
+
model_prev_0 = model_prev_list[-1]
|
33 |
+
|
34 |
+
h = lambda_t - lambda_prev_0
|
35 |
+
|
36 |
+
rks = []
|
37 |
+
D1s = []
|
38 |
+
for i in range(1, order):
|
39 |
+
t_prev_i = t_prev_list[-(i + 1)]
|
40 |
+
model_prev_i = model_prev_list[-(i + 1)]
|
41 |
+
lambda_prev_i = - torch.log(t_prev_i)
|
42 |
+
rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
|
43 |
+
rks.append(rk)
|
44 |
+
D1s.append((model_prev_i - model_prev_0) / rk)
|
45 |
+
|
46 |
+
rks.append(1.)
|
47 |
+
rks = torch.tensor(rks, device=x.device)
|
48 |
+
|
49 |
+
R = []
|
50 |
+
b = []
|
51 |
+
|
52 |
+
hh = -h[0]
|
53 |
+
h_phi_1 = torch.expm1(hh)
|
54 |
+
h_phi_k = h_phi_1 / hh - 1
|
55 |
+
|
56 |
+
factorial_i = 1
|
57 |
+
|
58 |
+
if self.variant == 'bh1':
|
59 |
+
B_h = hh
|
60 |
+
elif self.variant == 'bh2':
|
61 |
+
B_h = torch.expm1(hh)
|
62 |
+
else:
|
63 |
+
raise NotImplementedError('Bad variant!')
|
64 |
+
|
65 |
+
for i in range(1, order + 1):
|
66 |
+
R.append(torch.pow(rks, i - 1))
|
67 |
+
b.append(h_phi_k * factorial_i / B_h)
|
68 |
+
factorial_i *= (i + 1)
|
69 |
+
h_phi_k = h_phi_k / hh - 1 / factorial_i
|
70 |
+
|
71 |
+
R = torch.stack(R)
|
72 |
+
b = torch.tensor(b, device=x.device)
|
73 |
+
|
74 |
+
use_predictor = len(D1s) > 0
|
75 |
+
|
76 |
+
if use_predictor:
|
77 |
+
D1s = torch.stack(D1s, dim=1)
|
78 |
+
if order == 2:
|
79 |
+
rhos_p = torch.tensor([0.5], device=b.device)
|
80 |
+
else:
|
81 |
+
rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
|
82 |
+
else:
|
83 |
+
D1s = None
|
84 |
+
rhos_p = None
|
85 |
+
|
86 |
+
if order == 1:
|
87 |
+
rhos_c = torch.tensor([0.5], device=b.device)
|
88 |
+
else:
|
89 |
+
rhos_c = torch.linalg.solve(R, b)
|
90 |
+
|
91 |
+
x_t_ = expand_dims(t / t_prev_0, dims) * x - expand_dims(h_phi_1, dims) * model_prev_0
|
92 |
+
|
93 |
+
if use_predictor:
|
94 |
+
pred_res = torch.tensordot(D1s, rhos_p, dims=([1], [0]))
|
95 |
+
else:
|
96 |
+
pred_res = 0
|
97 |
+
|
98 |
+
x_t = x_t_ - expand_dims(B_h, dims) * pred_res
|
99 |
+
model_t = self.model_fn(x_t, t)
|
100 |
+
|
101 |
+
if D1s is not None:
|
102 |
+
corr_res = torch.tensordot(D1s, rhos_c[:-1], dims=([1], [0]))
|
103 |
+
else:
|
104 |
+
corr_res = 0
|
105 |
+
|
106 |
+
D1_t = (model_t - model_prev_0)
|
107 |
+
x_t = x_t_ - expand_dims(B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
|
108 |
+
|
109 |
+
return x_t, model_t
|
110 |
+
|
111 |
+
def sample(self, x, sigmas, callback=None, disable_pbar=False):
|
112 |
+
order = min(3, len(sigmas) - 2)
|
113 |
+
model_prev_list, t_prev_list = [], []
|
114 |
+
for i in trange(len(sigmas) - 1, disable=disable_pbar):
|
115 |
+
vec_t = sigmas[i].expand(x.shape[0])
|
116 |
+
|
117 |
+
if i == 0:
|
118 |
+
model_prev_list = [self.model_fn(x, vec_t)]
|
119 |
+
t_prev_list = [vec_t]
|
120 |
+
elif i < order:
|
121 |
+
init_order = i
|
122 |
+
x, model_x = self.update_fn(x, model_prev_list, t_prev_list, vec_t, init_order)
|
123 |
+
model_prev_list.append(model_x)
|
124 |
+
t_prev_list.append(vec_t)
|
125 |
+
else:
|
126 |
+
x, model_x = self.update_fn(x, model_prev_list, t_prev_list, vec_t, order)
|
127 |
+
model_prev_list.append(model_x)
|
128 |
+
t_prev_list.append(vec_t)
|
129 |
+
|
130 |
+
model_prev_list = model_prev_list[-order:]
|
131 |
+
t_prev_list = t_prev_list[-order:]
|
132 |
+
|
133 |
+
if callback is not None:
|
134 |
+
callback({'x': x, 'i': i, 'denoised': model_prev_list[-1]})
|
135 |
+
|
136 |
+
return model_prev_list[-1]
|
137 |
+
|
138 |
+
|
139 |
+
def sample_unipc(model, noise, sigmas, extra_args=None, callback=None, disable=False, variant='bh1'):
|
140 |
+
assert variant in ['bh1', 'bh2']
|
141 |
+
return FlowMatchUniPC(model, extra_args=extra_args, variant=variant).sample(noise, sigmas=sigmas, callback=callback, disable_pbar=disable)
|
diffusers_helper/k_diffusion/wrapper.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
|
4 |
+
def append_dims(x, target_dims):
|
5 |
+
return x[(...,) + (None,) * (target_dims - x.ndim)]
|
6 |
+
|
7 |
+
|
8 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=1.0):
|
9 |
+
if guidance_rescale == 0:
|
10 |
+
return noise_cfg
|
11 |
+
|
12 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
13 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
14 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
15 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1.0 - guidance_rescale) * noise_cfg
|
16 |
+
return noise_cfg
|
17 |
+
|
18 |
+
|
19 |
+
def fm_wrapper(transformer, t_scale=1000.0):
|
20 |
+
def k_model(x, sigma, **extra_args):
|
21 |
+
dtype = extra_args['dtype']
|
22 |
+
cfg_scale = extra_args['cfg_scale']
|
23 |
+
cfg_rescale = extra_args['cfg_rescale']
|
24 |
+
concat_latent = extra_args['concat_latent']
|
25 |
+
|
26 |
+
original_dtype = x.dtype
|
27 |
+
sigma = sigma.float()
|
28 |
+
|
29 |
+
x = x.to(dtype)
|
30 |
+
timestep = (sigma * t_scale).to(dtype)
|
31 |
+
|
32 |
+
if concat_latent is None:
|
33 |
+
hidden_states = x
|
34 |
+
else:
|
35 |
+
hidden_states = torch.cat([x, concat_latent.to(x)], dim=1)
|
36 |
+
|
37 |
+
pred_positive = transformer(hidden_states=hidden_states, timestep=timestep, return_dict=False, **extra_args['positive'])[0].float()
|
38 |
+
|
39 |
+
if cfg_scale == 1.0:
|
40 |
+
pred_negative = torch.zeros_like(pred_positive)
|
41 |
+
else:
|
42 |
+
pred_negative = transformer(hidden_states=hidden_states, timestep=timestep, return_dict=False, **extra_args['negative'])[0].float()
|
43 |
+
|
44 |
+
pred_cfg = pred_negative + cfg_scale * (pred_positive - pred_negative)
|
45 |
+
pred = rescale_noise_cfg(pred_cfg, pred_positive, guidance_rescale=cfg_rescale)
|
46 |
+
|
47 |
+
x0 = x.float() - pred.float() * append_dims(sigma, x.ndim)
|
48 |
+
|
49 |
+
return x0.to(dtype=original_dtype)
|
50 |
+
|
51 |
+
return k_model
|
diffusers_helper/memory.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# By lllyasviel
|
2 |
+
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
|
7 |
+
cpu = torch.device('cpu')
|
8 |
+
gpu = torch.device(f'cuda:{torch.cuda.current_device()}')
|
9 |
+
gpu_complete_modules = []
|
10 |
+
|
11 |
+
|
12 |
+
class DynamicSwapInstaller:
|
13 |
+
@staticmethod
|
14 |
+
def _install_module(module: torch.nn.Module, **kwargs):
|
15 |
+
original_class = module.__class__
|
16 |
+
module.__dict__['forge_backup_original_class'] = original_class
|
17 |
+
|
18 |
+
def hacked_get_attr(self, name: str):
|
19 |
+
if '_parameters' in self.__dict__:
|
20 |
+
_parameters = self.__dict__['_parameters']
|
21 |
+
if name in _parameters:
|
22 |
+
p = _parameters[name]
|
23 |
+
if p is None:
|
24 |
+
return None
|
25 |
+
if p.__class__ == torch.nn.Parameter:
|
26 |
+
return torch.nn.Parameter(p.to(**kwargs), requires_grad=p.requires_grad)
|
27 |
+
else:
|
28 |
+
return p.to(**kwargs)
|
29 |
+
if '_buffers' in self.__dict__:
|
30 |
+
_buffers = self.__dict__['_buffers']
|
31 |
+
if name in _buffers:
|
32 |
+
return _buffers[name].to(**kwargs)
|
33 |
+
return super(original_class, self).__getattr__(name)
|
34 |
+
|
35 |
+
module.__class__ = type('DynamicSwap_' + original_class.__name__, (original_class,), {
|
36 |
+
'__getattr__': hacked_get_attr,
|
37 |
+
})
|
38 |
+
|
39 |
+
return
|
40 |
+
|
41 |
+
@staticmethod
|
42 |
+
def _uninstall_module(module: torch.nn.Module):
|
43 |
+
if 'forge_backup_original_class' in module.__dict__:
|
44 |
+
module.__class__ = module.__dict__.pop('forge_backup_original_class')
|
45 |
+
return
|
46 |
+
|
47 |
+
@staticmethod
|
48 |
+
def install_model(model: torch.nn.Module, **kwargs):
|
49 |
+
for m in model.modules():
|
50 |
+
DynamicSwapInstaller._install_module(m, **kwargs)
|
51 |
+
return
|
52 |
+
|
53 |
+
@staticmethod
|
54 |
+
def uninstall_model(model: torch.nn.Module):
|
55 |
+
for m in model.modules():
|
56 |
+
DynamicSwapInstaller._uninstall_module(m)
|
57 |
+
return
|
58 |
+
|
59 |
+
|
60 |
+
def fake_diffusers_current_device(model: torch.nn.Module, target_device: torch.device):
|
61 |
+
if hasattr(model, 'scale_shift_table'):
|
62 |
+
model.scale_shift_table.data = model.scale_shift_table.data.to(target_device)
|
63 |
+
return
|
64 |
+
|
65 |
+
for k, p in model.named_modules():
|
66 |
+
if hasattr(p, 'weight'):
|
67 |
+
p.to(target_device)
|
68 |
+
return
|
69 |
+
|
70 |
+
|
71 |
+
def get_cuda_free_memory_gb(device=None):
|
72 |
+
if device is None:
|
73 |
+
device = gpu
|
74 |
+
|
75 |
+
memory_stats = torch.cuda.memory_stats(device)
|
76 |
+
bytes_active = memory_stats['active_bytes.all.current']
|
77 |
+
bytes_reserved = memory_stats['reserved_bytes.all.current']
|
78 |
+
bytes_free_cuda, _ = torch.cuda.mem_get_info(device)
|
79 |
+
bytes_inactive_reserved = bytes_reserved - bytes_active
|
80 |
+
bytes_total_available = bytes_free_cuda + bytes_inactive_reserved
|
81 |
+
return bytes_total_available / (1024 ** 3)
|
82 |
+
|
83 |
+
|
84 |
+
def move_model_to_device_with_memory_preservation(model, target_device, preserved_memory_gb=0):
|
85 |
+
print(f'Moving {model.__class__.__name__} to {target_device} with preserved memory: {preserved_memory_gb} GB')
|
86 |
+
|
87 |
+
for m in model.modules():
|
88 |
+
if get_cuda_free_memory_gb(target_device) <= preserved_memory_gb:
|
89 |
+
torch.cuda.empty_cache()
|
90 |
+
return
|
91 |
+
|
92 |
+
if hasattr(m, 'weight'):
|
93 |
+
m.to(device=target_device)
|
94 |
+
|
95 |
+
model.to(device=target_device)
|
96 |
+
torch.cuda.empty_cache()
|
97 |
+
return
|
98 |
+
|
99 |
+
|
100 |
+
def offload_model_from_device_for_memory_preservation(model, target_device, preserved_memory_gb=0):
|
101 |
+
print(f'Offloading {model.__class__.__name__} from {target_device} to preserve memory: {preserved_memory_gb} GB')
|
102 |
+
|
103 |
+
for m in model.modules():
|
104 |
+
if get_cuda_free_memory_gb(target_device) >= preserved_memory_gb:
|
105 |
+
torch.cuda.empty_cache()
|
106 |
+
return
|
107 |
+
|
108 |
+
if hasattr(m, 'weight'):
|
109 |
+
m.to(device=cpu)
|
110 |
+
|
111 |
+
model.to(device=cpu)
|
112 |
+
torch.cuda.empty_cache()
|
113 |
+
return
|
114 |
+
|
115 |
+
|
116 |
+
def unload_complete_models(*args):
|
117 |
+
for m in gpu_complete_modules + list(args):
|
118 |
+
m.to(device=cpu)
|
119 |
+
print(f'Unloaded {m.__class__.__name__} as complete.')
|
120 |
+
|
121 |
+
gpu_complete_modules.clear()
|
122 |
+
torch.cuda.empty_cache()
|
123 |
+
return
|
124 |
+
|
125 |
+
|
126 |
+
def load_model_as_complete(model, target_device, unload=True):
|
127 |
+
if unload:
|
128 |
+
unload_complete_models()
|
129 |
+
|
130 |
+
model.to(device=target_device)
|
131 |
+
print(f'Loaded {model.__class__.__name__} to {target_device} as complete.')
|
132 |
+
|
133 |
+
gpu_complete_modules.append(model)
|
134 |
+
return
|
diffusers_helper/models/hunyuan_video_packed.py
ADDED
@@ -0,0 +1,1032 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import einops
|
5 |
+
import torch.nn as nn
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from diffusers.loaders import FromOriginalModelMixin
|
9 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
10 |
+
from diffusers.loaders import PeftAdapterMixin
|
11 |
+
from diffusers.utils import logging
|
12 |
+
from diffusers.models.attention import FeedForward
|
13 |
+
from diffusers.models.attention_processor import Attention
|
14 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps, PixArtAlphaTextProjection
|
15 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
16 |
+
from diffusers.models.modeling_utils import ModelMixin
|
17 |
+
from diffusers_helper.dit_common import LayerNorm
|
18 |
+
from diffusers_helper.utils import zero_module
|
19 |
+
|
20 |
+
|
21 |
+
enabled_backends = []
|
22 |
+
|
23 |
+
if torch.backends.cuda.flash_sdp_enabled():
|
24 |
+
enabled_backends.append("flash")
|
25 |
+
if torch.backends.cuda.math_sdp_enabled():
|
26 |
+
enabled_backends.append("math")
|
27 |
+
if torch.backends.cuda.mem_efficient_sdp_enabled():
|
28 |
+
enabled_backends.append("mem_efficient")
|
29 |
+
if torch.backends.cuda.cudnn_sdp_enabled():
|
30 |
+
enabled_backends.append("cudnn")
|
31 |
+
|
32 |
+
print("Currently enabled native sdp backends:", enabled_backends)
|
33 |
+
|
34 |
+
try:
|
35 |
+
# raise NotImplementedError
|
36 |
+
from xformers.ops import memory_efficient_attention as xformers_attn_func
|
37 |
+
print('Xformers is installed!')
|
38 |
+
except:
|
39 |
+
print('Xformers is not installed!')
|
40 |
+
xformers_attn_func = None
|
41 |
+
|
42 |
+
try:
|
43 |
+
# raise NotImplementedError
|
44 |
+
from flash_attn import flash_attn_varlen_func, flash_attn_func
|
45 |
+
print('Flash Attn is installed!')
|
46 |
+
except:
|
47 |
+
print('Flash Attn is not installed!')
|
48 |
+
flash_attn_varlen_func = None
|
49 |
+
flash_attn_func = None
|
50 |
+
|
51 |
+
try:
|
52 |
+
# raise NotImplementedError
|
53 |
+
from sageattention import sageattn_varlen, sageattn
|
54 |
+
print('Sage Attn is installed!')
|
55 |
+
except:
|
56 |
+
print('Sage Attn is not installed!')
|
57 |
+
sageattn_varlen = None
|
58 |
+
sageattn = None
|
59 |
+
|
60 |
+
|
61 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
62 |
+
|
63 |
+
|
64 |
+
def pad_for_3d_conv(x, kernel_size):
|
65 |
+
b, c, t, h, w = x.shape
|
66 |
+
pt, ph, pw = kernel_size
|
67 |
+
pad_t = (pt - (t % pt)) % pt
|
68 |
+
pad_h = (ph - (h % ph)) % ph
|
69 |
+
pad_w = (pw - (w % pw)) % pw
|
70 |
+
return torch.nn.functional.pad(x, (0, pad_w, 0, pad_h, 0, pad_t), mode='replicate')
|
71 |
+
|
72 |
+
|
73 |
+
def center_down_sample_3d(x, kernel_size):
|
74 |
+
# pt, ph, pw = kernel_size
|
75 |
+
# cp = (pt * ph * pw) // 2
|
76 |
+
# xp = einops.rearrange(x, 'b c (t pt) (h ph) (w pw) -> (pt ph pw) b c t h w', pt=pt, ph=ph, pw=pw)
|
77 |
+
# xc = xp[cp]
|
78 |
+
# return xc
|
79 |
+
return torch.nn.functional.avg_pool3d(x, kernel_size, stride=kernel_size)
|
80 |
+
|
81 |
+
|
82 |
+
def get_cu_seqlens(text_mask, img_len):
|
83 |
+
batch_size = text_mask.shape[0]
|
84 |
+
text_len = text_mask.sum(dim=1)
|
85 |
+
max_len = text_mask.shape[1] + img_len
|
86 |
+
|
87 |
+
cu_seqlens = torch.zeros([2 * batch_size + 1], dtype=torch.int32, device="cuda")
|
88 |
+
|
89 |
+
for i in range(batch_size):
|
90 |
+
s = text_len[i] + img_len
|
91 |
+
s1 = i * max_len + s
|
92 |
+
s2 = (i + 1) * max_len
|
93 |
+
cu_seqlens[2 * i + 1] = s1
|
94 |
+
cu_seqlens[2 * i + 2] = s2
|
95 |
+
|
96 |
+
return cu_seqlens
|
97 |
+
|
98 |
+
|
99 |
+
def apply_rotary_emb_transposed(x, freqs_cis):
|
100 |
+
cos, sin = freqs_cis.unsqueeze(-2).chunk(2, dim=-1)
|
101 |
+
x_real, x_imag = x.unflatten(-1, (-1, 2)).unbind(-1)
|
102 |
+
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
103 |
+
out = x.float() * cos + x_rotated.float() * sin
|
104 |
+
out = out.to(x)
|
105 |
+
return out
|
106 |
+
|
107 |
+
|
108 |
+
def attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv):
|
109 |
+
if cu_seqlens_q is None and cu_seqlens_kv is None and max_seqlen_q is None and max_seqlen_kv is None:
|
110 |
+
if sageattn is not None:
|
111 |
+
x = sageattn(q, k, v, tensor_layout='NHD')
|
112 |
+
return x
|
113 |
+
|
114 |
+
if flash_attn_func is not None:
|
115 |
+
x = flash_attn_func(q, k, v)
|
116 |
+
return x
|
117 |
+
|
118 |
+
if xformers_attn_func is not None:
|
119 |
+
x = xformers_attn_func(q, k, v)
|
120 |
+
return x
|
121 |
+
|
122 |
+
x = torch.nn.functional.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)).transpose(1, 2)
|
123 |
+
return x
|
124 |
+
|
125 |
+
batch_size = q.shape[0]
|
126 |
+
q = q.view(q.shape[0] * q.shape[1], *q.shape[2:])
|
127 |
+
k = k.view(k.shape[0] * k.shape[1], *k.shape[2:])
|
128 |
+
v = v.view(v.shape[0] * v.shape[1], *v.shape[2:])
|
129 |
+
if sageattn_varlen is not None:
|
130 |
+
x = sageattn_varlen(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
131 |
+
elif flash_attn_varlen_func is not None:
|
132 |
+
x = flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
133 |
+
else:
|
134 |
+
raise NotImplementedError('No Attn Installed!')
|
135 |
+
x = x.view(batch_size, max_seqlen_q, *x.shape[2:])
|
136 |
+
return x
|
137 |
+
|
138 |
+
|
139 |
+
class HunyuanAttnProcessorFlashAttnDouble:
|
140 |
+
def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb):
|
141 |
+
cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask
|
142 |
+
|
143 |
+
query = attn.to_q(hidden_states)
|
144 |
+
key = attn.to_k(hidden_states)
|
145 |
+
value = attn.to_v(hidden_states)
|
146 |
+
|
147 |
+
query = query.unflatten(2, (attn.heads, -1))
|
148 |
+
key = key.unflatten(2, (attn.heads, -1))
|
149 |
+
value = value.unflatten(2, (attn.heads, -1))
|
150 |
+
|
151 |
+
query = attn.norm_q(query)
|
152 |
+
key = attn.norm_k(key)
|
153 |
+
|
154 |
+
query = apply_rotary_emb_transposed(query, image_rotary_emb)
|
155 |
+
key = apply_rotary_emb_transposed(key, image_rotary_emb)
|
156 |
+
|
157 |
+
encoder_query = attn.add_q_proj(encoder_hidden_states)
|
158 |
+
encoder_key = attn.add_k_proj(encoder_hidden_states)
|
159 |
+
encoder_value = attn.add_v_proj(encoder_hidden_states)
|
160 |
+
|
161 |
+
encoder_query = encoder_query.unflatten(2, (attn.heads, -1))
|
162 |
+
encoder_key = encoder_key.unflatten(2, (attn.heads, -1))
|
163 |
+
encoder_value = encoder_value.unflatten(2, (attn.heads, -1))
|
164 |
+
|
165 |
+
encoder_query = attn.norm_added_q(encoder_query)
|
166 |
+
encoder_key = attn.norm_added_k(encoder_key)
|
167 |
+
|
168 |
+
query = torch.cat([query, encoder_query], dim=1)
|
169 |
+
key = torch.cat([key, encoder_key], dim=1)
|
170 |
+
value = torch.cat([value, encoder_value], dim=1)
|
171 |
+
|
172 |
+
hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
173 |
+
hidden_states = hidden_states.flatten(-2)
|
174 |
+
|
175 |
+
txt_length = encoder_hidden_states.shape[1]
|
176 |
+
hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:]
|
177 |
+
|
178 |
+
hidden_states = attn.to_out[0](hidden_states)
|
179 |
+
hidden_states = attn.to_out[1](hidden_states)
|
180 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
181 |
+
|
182 |
+
return hidden_states, encoder_hidden_states
|
183 |
+
|
184 |
+
|
185 |
+
class HunyuanAttnProcessorFlashAttnSingle:
|
186 |
+
def __call__(self, attn, hidden_states, encoder_hidden_states, attention_mask, image_rotary_emb):
|
187 |
+
cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv = attention_mask
|
188 |
+
|
189 |
+
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
|
190 |
+
|
191 |
+
query = attn.to_q(hidden_states)
|
192 |
+
key = attn.to_k(hidden_states)
|
193 |
+
value = attn.to_v(hidden_states)
|
194 |
+
|
195 |
+
query = query.unflatten(2, (attn.heads, -1))
|
196 |
+
key = key.unflatten(2, (attn.heads, -1))
|
197 |
+
value = value.unflatten(2, (attn.heads, -1))
|
198 |
+
|
199 |
+
query = attn.norm_q(query)
|
200 |
+
key = attn.norm_k(key)
|
201 |
+
|
202 |
+
txt_length = encoder_hidden_states.shape[1]
|
203 |
+
|
204 |
+
query = torch.cat([apply_rotary_emb_transposed(query[:, :-txt_length], image_rotary_emb), query[:, -txt_length:]], dim=1)
|
205 |
+
key = torch.cat([apply_rotary_emb_transposed(key[:, :-txt_length], image_rotary_emb), key[:, -txt_length:]], dim=1)
|
206 |
+
|
207 |
+
hidden_states = attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv)
|
208 |
+
hidden_states = hidden_states.flatten(-2)
|
209 |
+
|
210 |
+
hidden_states, encoder_hidden_states = hidden_states[:, :-txt_length], hidden_states[:, -txt_length:]
|
211 |
+
|
212 |
+
return hidden_states, encoder_hidden_states
|
213 |
+
|
214 |
+
|
215 |
+
class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module):
|
216 |
+
def __init__(self, embedding_dim, pooled_projection_dim):
|
217 |
+
super().__init__()
|
218 |
+
|
219 |
+
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
220 |
+
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
221 |
+
self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
222 |
+
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
|
223 |
+
|
224 |
+
def forward(self, timestep, guidance, pooled_projection):
|
225 |
+
timesteps_proj = self.time_proj(timestep)
|
226 |
+
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))
|
227 |
+
|
228 |
+
guidance_proj = self.time_proj(guidance)
|
229 |
+
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype))
|
230 |
+
|
231 |
+
time_guidance_emb = timesteps_emb + guidance_emb
|
232 |
+
|
233 |
+
pooled_projections = self.text_embedder(pooled_projection)
|
234 |
+
conditioning = time_guidance_emb + pooled_projections
|
235 |
+
|
236 |
+
return conditioning
|
237 |
+
|
238 |
+
|
239 |
+
class CombinedTimestepTextProjEmbeddings(nn.Module):
|
240 |
+
def __init__(self, embedding_dim, pooled_projection_dim):
|
241 |
+
super().__init__()
|
242 |
+
|
243 |
+
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
|
244 |
+
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
245 |
+
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
|
246 |
+
|
247 |
+
def forward(self, timestep, pooled_projection):
|
248 |
+
timesteps_proj = self.time_proj(timestep)
|
249 |
+
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype))
|
250 |
+
|
251 |
+
pooled_projections = self.text_embedder(pooled_projection)
|
252 |
+
|
253 |
+
conditioning = timesteps_emb + pooled_projections
|
254 |
+
|
255 |
+
return conditioning
|
256 |
+
|
257 |
+
|
258 |
+
class HunyuanVideoAdaNorm(nn.Module):
|
259 |
+
def __init__(self, in_features: int, out_features: Optional[int] = None) -> None:
|
260 |
+
super().__init__()
|
261 |
+
|
262 |
+
out_features = out_features or 2 * in_features
|
263 |
+
self.linear = nn.Linear(in_features, out_features)
|
264 |
+
self.nonlinearity = nn.SiLU()
|
265 |
+
|
266 |
+
def forward(
|
267 |
+
self, temb: torch.Tensor
|
268 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
269 |
+
temb = self.linear(self.nonlinearity(temb))
|
270 |
+
gate_msa, gate_mlp = temb.chunk(2, dim=-1)
|
271 |
+
gate_msa, gate_mlp = gate_msa.unsqueeze(1), gate_mlp.unsqueeze(1)
|
272 |
+
return gate_msa, gate_mlp
|
273 |
+
|
274 |
+
|
275 |
+
class HunyuanVideoIndividualTokenRefinerBlock(nn.Module):
|
276 |
+
def __init__(
|
277 |
+
self,
|
278 |
+
num_attention_heads: int,
|
279 |
+
attention_head_dim: int,
|
280 |
+
mlp_width_ratio: str = 4.0,
|
281 |
+
mlp_drop_rate: float = 0.0,
|
282 |
+
attention_bias: bool = True,
|
283 |
+
) -> None:
|
284 |
+
super().__init__()
|
285 |
+
|
286 |
+
hidden_size = num_attention_heads * attention_head_dim
|
287 |
+
|
288 |
+
self.norm1 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
|
289 |
+
self.attn = Attention(
|
290 |
+
query_dim=hidden_size,
|
291 |
+
cross_attention_dim=None,
|
292 |
+
heads=num_attention_heads,
|
293 |
+
dim_head=attention_head_dim,
|
294 |
+
bias=attention_bias,
|
295 |
+
)
|
296 |
+
|
297 |
+
self.norm2 = LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6)
|
298 |
+
self.ff = FeedForward(hidden_size, mult=mlp_width_ratio, activation_fn="linear-silu", dropout=mlp_drop_rate)
|
299 |
+
|
300 |
+
self.norm_out = HunyuanVideoAdaNorm(hidden_size, 2 * hidden_size)
|
301 |
+
|
302 |
+
def forward(
|
303 |
+
self,
|
304 |
+
hidden_states: torch.Tensor,
|
305 |
+
temb: torch.Tensor,
|
306 |
+
attention_mask: Optional[torch.Tensor] = None,
|
307 |
+
) -> torch.Tensor:
|
308 |
+
norm_hidden_states = self.norm1(hidden_states)
|
309 |
+
|
310 |
+
attn_output = self.attn(
|
311 |
+
hidden_states=norm_hidden_states,
|
312 |
+
encoder_hidden_states=None,
|
313 |
+
attention_mask=attention_mask,
|
314 |
+
)
|
315 |
+
|
316 |
+
gate_msa, gate_mlp = self.norm_out(temb)
|
317 |
+
hidden_states = hidden_states + attn_output * gate_msa
|
318 |
+
|
319 |
+
ff_output = self.ff(self.norm2(hidden_states))
|
320 |
+
hidden_states = hidden_states + ff_output * gate_mlp
|
321 |
+
|
322 |
+
return hidden_states
|
323 |
+
|
324 |
+
|
325 |
+
class HunyuanVideoIndividualTokenRefiner(nn.Module):
|
326 |
+
def __init__(
|
327 |
+
self,
|
328 |
+
num_attention_heads: int,
|
329 |
+
attention_head_dim: int,
|
330 |
+
num_layers: int,
|
331 |
+
mlp_width_ratio: float = 4.0,
|
332 |
+
mlp_drop_rate: float = 0.0,
|
333 |
+
attention_bias: bool = True,
|
334 |
+
) -> None:
|
335 |
+
super().__init__()
|
336 |
+
|
337 |
+
self.refiner_blocks = nn.ModuleList(
|
338 |
+
[
|
339 |
+
HunyuanVideoIndividualTokenRefinerBlock(
|
340 |
+
num_attention_heads=num_attention_heads,
|
341 |
+
attention_head_dim=attention_head_dim,
|
342 |
+
mlp_width_ratio=mlp_width_ratio,
|
343 |
+
mlp_drop_rate=mlp_drop_rate,
|
344 |
+
attention_bias=attention_bias,
|
345 |
+
)
|
346 |
+
for _ in range(num_layers)
|
347 |
+
]
|
348 |
+
)
|
349 |
+
|
350 |
+
def forward(
|
351 |
+
self,
|
352 |
+
hidden_states: torch.Tensor,
|
353 |
+
temb: torch.Tensor,
|
354 |
+
attention_mask: Optional[torch.Tensor] = None,
|
355 |
+
) -> None:
|
356 |
+
self_attn_mask = None
|
357 |
+
if attention_mask is not None:
|
358 |
+
batch_size = attention_mask.shape[0]
|
359 |
+
seq_len = attention_mask.shape[1]
|
360 |
+
attention_mask = attention_mask.to(hidden_states.device).bool()
|
361 |
+
self_attn_mask_1 = attention_mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1)
|
362 |
+
self_attn_mask_2 = self_attn_mask_1.transpose(2, 3)
|
363 |
+
self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool()
|
364 |
+
self_attn_mask[:, :, :, 0] = True
|
365 |
+
|
366 |
+
for block in self.refiner_blocks:
|
367 |
+
hidden_states = block(hidden_states, temb, self_attn_mask)
|
368 |
+
|
369 |
+
return hidden_states
|
370 |
+
|
371 |
+
|
372 |
+
class HunyuanVideoTokenRefiner(nn.Module):
|
373 |
+
def __init__(
|
374 |
+
self,
|
375 |
+
in_channels: int,
|
376 |
+
num_attention_heads: int,
|
377 |
+
attention_head_dim: int,
|
378 |
+
num_layers: int,
|
379 |
+
mlp_ratio: float = 4.0,
|
380 |
+
mlp_drop_rate: float = 0.0,
|
381 |
+
attention_bias: bool = True,
|
382 |
+
) -> None:
|
383 |
+
super().__init__()
|
384 |
+
|
385 |
+
hidden_size = num_attention_heads * attention_head_dim
|
386 |
+
|
387 |
+
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
|
388 |
+
embedding_dim=hidden_size, pooled_projection_dim=in_channels
|
389 |
+
)
|
390 |
+
self.proj_in = nn.Linear(in_channels, hidden_size, bias=True)
|
391 |
+
self.token_refiner = HunyuanVideoIndividualTokenRefiner(
|
392 |
+
num_attention_heads=num_attention_heads,
|
393 |
+
attention_head_dim=attention_head_dim,
|
394 |
+
num_layers=num_layers,
|
395 |
+
mlp_width_ratio=mlp_ratio,
|
396 |
+
mlp_drop_rate=mlp_drop_rate,
|
397 |
+
attention_bias=attention_bias,
|
398 |
+
)
|
399 |
+
|
400 |
+
def forward(
|
401 |
+
self,
|
402 |
+
hidden_states: torch.Tensor,
|
403 |
+
timestep: torch.LongTensor,
|
404 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
405 |
+
) -> torch.Tensor:
|
406 |
+
if attention_mask is None:
|
407 |
+
pooled_projections = hidden_states.mean(dim=1)
|
408 |
+
else:
|
409 |
+
original_dtype = hidden_states.dtype
|
410 |
+
mask_float = attention_mask.float().unsqueeze(-1)
|
411 |
+
pooled_projections = (hidden_states * mask_float).sum(dim=1) / mask_float.sum(dim=1)
|
412 |
+
pooled_projections = pooled_projections.to(original_dtype)
|
413 |
+
|
414 |
+
temb = self.time_text_embed(timestep, pooled_projections)
|
415 |
+
hidden_states = self.proj_in(hidden_states)
|
416 |
+
hidden_states = self.token_refiner(hidden_states, temb, attention_mask)
|
417 |
+
|
418 |
+
return hidden_states
|
419 |
+
|
420 |
+
|
421 |
+
class HunyuanVideoRotaryPosEmbed(nn.Module):
|
422 |
+
def __init__(self, rope_dim, theta):
|
423 |
+
super().__init__()
|
424 |
+
self.DT, self.DY, self.DX = rope_dim
|
425 |
+
self.theta = theta
|
426 |
+
|
427 |
+
@torch.no_grad()
|
428 |
+
def get_frequency(self, dim, pos):
|
429 |
+
T, H, W = pos.shape
|
430 |
+
freqs = 1.0 / (self.theta ** (torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device)[: (dim // 2)] / dim))
|
431 |
+
freqs = torch.outer(freqs, pos.reshape(-1)).unflatten(-1, (T, H, W)).repeat_interleave(2, dim=0)
|
432 |
+
return freqs.cos(), freqs.sin()
|
433 |
+
|
434 |
+
@torch.no_grad()
|
435 |
+
def forward_inner(self, frame_indices, height, width, device):
|
436 |
+
GT, GY, GX = torch.meshgrid(
|
437 |
+
frame_indices.to(device=device, dtype=torch.float32),
|
438 |
+
torch.arange(0, height, device=device, dtype=torch.float32),
|
439 |
+
torch.arange(0, width, device=device, dtype=torch.float32),
|
440 |
+
indexing="ij"
|
441 |
+
)
|
442 |
+
|
443 |
+
FCT, FST = self.get_frequency(self.DT, GT)
|
444 |
+
FCY, FSY = self.get_frequency(self.DY, GY)
|
445 |
+
FCX, FSX = self.get_frequency(self.DX, GX)
|
446 |
+
|
447 |
+
result = torch.cat([FCT, FCY, FCX, FST, FSY, FSX], dim=0)
|
448 |
+
|
449 |
+
return result.to(device)
|
450 |
+
|
451 |
+
@torch.no_grad()
|
452 |
+
def forward(self, frame_indices, height, width, device):
|
453 |
+
frame_indices = frame_indices.unbind(0)
|
454 |
+
results = [self.forward_inner(f, height, width, device) for f in frame_indices]
|
455 |
+
results = torch.stack(results, dim=0)
|
456 |
+
return results
|
457 |
+
|
458 |
+
|
459 |
+
class AdaLayerNormZero(nn.Module):
|
460 |
+
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
|
461 |
+
super().__init__()
|
462 |
+
self.silu = nn.SiLU()
|
463 |
+
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias)
|
464 |
+
if norm_type == "layer_norm":
|
465 |
+
self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
466 |
+
else:
|
467 |
+
raise ValueError(f"unknown norm_type {norm_type}")
|
468 |
+
|
469 |
+
def forward(
|
470 |
+
self,
|
471 |
+
x: torch.Tensor,
|
472 |
+
emb: Optional[torch.Tensor] = None,
|
473 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
474 |
+
emb = emb.unsqueeze(-2)
|
475 |
+
emb = self.linear(self.silu(emb))
|
476 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1)
|
477 |
+
x = self.norm(x) * (1 + scale_msa) + shift_msa
|
478 |
+
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
479 |
+
|
480 |
+
|
481 |
+
class AdaLayerNormZeroSingle(nn.Module):
|
482 |
+
def __init__(self, embedding_dim: int, norm_type="layer_norm", bias=True):
|
483 |
+
super().__init__()
|
484 |
+
|
485 |
+
self.silu = nn.SiLU()
|
486 |
+
self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias)
|
487 |
+
if norm_type == "layer_norm":
|
488 |
+
self.norm = LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6)
|
489 |
+
else:
|
490 |
+
raise ValueError(f"unknown norm_type {norm_type}")
|
491 |
+
|
492 |
+
def forward(
|
493 |
+
self,
|
494 |
+
x: torch.Tensor,
|
495 |
+
emb: Optional[torch.Tensor] = None,
|
496 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
497 |
+
emb = emb.unsqueeze(-2)
|
498 |
+
emb = self.linear(self.silu(emb))
|
499 |
+
shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=-1)
|
500 |
+
x = self.norm(x) * (1 + scale_msa) + shift_msa
|
501 |
+
return x, gate_msa
|
502 |
+
|
503 |
+
|
504 |
+
class AdaLayerNormContinuous(nn.Module):
|
505 |
+
def __init__(
|
506 |
+
self,
|
507 |
+
embedding_dim: int,
|
508 |
+
conditioning_embedding_dim: int,
|
509 |
+
elementwise_affine=True,
|
510 |
+
eps=1e-5,
|
511 |
+
bias=True,
|
512 |
+
norm_type="layer_norm",
|
513 |
+
):
|
514 |
+
super().__init__()
|
515 |
+
self.silu = nn.SiLU()
|
516 |
+
self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias)
|
517 |
+
if norm_type == "layer_norm":
|
518 |
+
self.norm = LayerNorm(embedding_dim, eps, elementwise_affine, bias)
|
519 |
+
else:
|
520 |
+
raise ValueError(f"unknown norm_type {norm_type}")
|
521 |
+
|
522 |
+
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
|
523 |
+
emb = emb.unsqueeze(-2)
|
524 |
+
emb = self.linear(self.silu(emb))
|
525 |
+
scale, shift = emb.chunk(2, dim=-1)
|
526 |
+
x = self.norm(x) * (1 + scale) + shift
|
527 |
+
return x
|
528 |
+
|
529 |
+
|
530 |
+
class HunyuanVideoSingleTransformerBlock(nn.Module):
|
531 |
+
def __init__(
|
532 |
+
self,
|
533 |
+
num_attention_heads: int,
|
534 |
+
attention_head_dim: int,
|
535 |
+
mlp_ratio: float = 4.0,
|
536 |
+
qk_norm: str = "rms_norm",
|
537 |
+
) -> None:
|
538 |
+
super().__init__()
|
539 |
+
|
540 |
+
hidden_size = num_attention_heads * attention_head_dim
|
541 |
+
mlp_dim = int(hidden_size * mlp_ratio)
|
542 |
+
|
543 |
+
self.attn = Attention(
|
544 |
+
query_dim=hidden_size,
|
545 |
+
cross_attention_dim=None,
|
546 |
+
dim_head=attention_head_dim,
|
547 |
+
heads=num_attention_heads,
|
548 |
+
out_dim=hidden_size,
|
549 |
+
bias=True,
|
550 |
+
processor=HunyuanAttnProcessorFlashAttnSingle(),
|
551 |
+
qk_norm=qk_norm,
|
552 |
+
eps=1e-6,
|
553 |
+
pre_only=True,
|
554 |
+
)
|
555 |
+
|
556 |
+
self.norm = AdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm")
|
557 |
+
self.proj_mlp = nn.Linear(hidden_size, mlp_dim)
|
558 |
+
self.act_mlp = nn.GELU(approximate="tanh")
|
559 |
+
self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size)
|
560 |
+
|
561 |
+
def forward(
|
562 |
+
self,
|
563 |
+
hidden_states: torch.Tensor,
|
564 |
+
encoder_hidden_states: torch.Tensor,
|
565 |
+
temb: torch.Tensor,
|
566 |
+
attention_mask: Optional[torch.Tensor] = None,
|
567 |
+
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
568 |
+
) -> torch.Tensor:
|
569 |
+
text_seq_length = encoder_hidden_states.shape[1]
|
570 |
+
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
|
571 |
+
|
572 |
+
residual = hidden_states
|
573 |
+
|
574 |
+
# 1. Input normalization
|
575 |
+
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
576 |
+
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
577 |
+
|
578 |
+
norm_hidden_states, norm_encoder_hidden_states = (
|
579 |
+
norm_hidden_states[:, :-text_seq_length, :],
|
580 |
+
norm_hidden_states[:, -text_seq_length:, :],
|
581 |
+
)
|
582 |
+
|
583 |
+
# 2. Attention
|
584 |
+
attn_output, context_attn_output = self.attn(
|
585 |
+
hidden_states=norm_hidden_states,
|
586 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
587 |
+
attention_mask=attention_mask,
|
588 |
+
image_rotary_emb=image_rotary_emb,
|
589 |
+
)
|
590 |
+
attn_output = torch.cat([attn_output, context_attn_output], dim=1)
|
591 |
+
|
592 |
+
# 3. Modulation and residual connection
|
593 |
+
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
594 |
+
hidden_states = gate * self.proj_out(hidden_states)
|
595 |
+
hidden_states = hidden_states + residual
|
596 |
+
|
597 |
+
hidden_states, encoder_hidden_states = (
|
598 |
+
hidden_states[:, :-text_seq_length, :],
|
599 |
+
hidden_states[:, -text_seq_length:, :],
|
600 |
+
)
|
601 |
+
return hidden_states, encoder_hidden_states
|
602 |
+
|
603 |
+
|
604 |
+
class HunyuanVideoTransformerBlock(nn.Module):
|
605 |
+
def __init__(
|
606 |
+
self,
|
607 |
+
num_attention_heads: int,
|
608 |
+
attention_head_dim: int,
|
609 |
+
mlp_ratio: float,
|
610 |
+
qk_norm: str = "rms_norm",
|
611 |
+
) -> None:
|
612 |
+
super().__init__()
|
613 |
+
|
614 |
+
hidden_size = num_attention_heads * attention_head_dim
|
615 |
+
|
616 |
+
self.norm1 = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
|
617 |
+
self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm")
|
618 |
+
|
619 |
+
self.attn = Attention(
|
620 |
+
query_dim=hidden_size,
|
621 |
+
cross_attention_dim=None,
|
622 |
+
added_kv_proj_dim=hidden_size,
|
623 |
+
dim_head=attention_head_dim,
|
624 |
+
heads=num_attention_heads,
|
625 |
+
out_dim=hidden_size,
|
626 |
+
context_pre_only=False,
|
627 |
+
bias=True,
|
628 |
+
processor=HunyuanAttnProcessorFlashAttnDouble(),
|
629 |
+
qk_norm=qk_norm,
|
630 |
+
eps=1e-6,
|
631 |
+
)
|
632 |
+
|
633 |
+
self.norm2 = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
634 |
+
self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
|
635 |
+
|
636 |
+
self.norm2_context = LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
637 |
+
self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate")
|
638 |
+
|
639 |
+
def forward(
|
640 |
+
self,
|
641 |
+
hidden_states: torch.Tensor,
|
642 |
+
encoder_hidden_states: torch.Tensor,
|
643 |
+
temb: torch.Tensor,
|
644 |
+
attention_mask: Optional[torch.Tensor] = None,
|
645 |
+
freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
646 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
647 |
+
# 1. Input normalization
|
648 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
649 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(encoder_hidden_states, emb=temb)
|
650 |
+
|
651 |
+
# 2. Joint attention
|
652 |
+
attn_output, context_attn_output = self.attn(
|
653 |
+
hidden_states=norm_hidden_states,
|
654 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
655 |
+
attention_mask=attention_mask,
|
656 |
+
image_rotary_emb=freqs_cis,
|
657 |
+
)
|
658 |
+
|
659 |
+
# 3. Modulation and residual connection
|
660 |
+
hidden_states = hidden_states + attn_output * gate_msa
|
661 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa
|
662 |
+
|
663 |
+
norm_hidden_states = self.norm2(hidden_states)
|
664 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
665 |
+
|
666 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
667 |
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp) + c_shift_mlp
|
668 |
+
|
669 |
+
# 4. Feed-forward
|
670 |
+
ff_output = self.ff(norm_hidden_states)
|
671 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
672 |
+
|
673 |
+
hidden_states = hidden_states + gate_mlp * ff_output
|
674 |
+
encoder_hidden_states = encoder_hidden_states + c_gate_mlp * context_ff_output
|
675 |
+
|
676 |
+
return hidden_states, encoder_hidden_states
|
677 |
+
|
678 |
+
|
679 |
+
class ClipVisionProjection(nn.Module):
|
680 |
+
def __init__(self, in_channels, out_channels):
|
681 |
+
super().__init__()
|
682 |
+
self.up = nn.Linear(in_channels, out_channels * 3)
|
683 |
+
self.down = nn.Linear(out_channels * 3, out_channels)
|
684 |
+
|
685 |
+
def forward(self, x):
|
686 |
+
projected_x = self.down(nn.functional.silu(self.up(x)))
|
687 |
+
return projected_x
|
688 |
+
|
689 |
+
|
690 |
+
class HunyuanVideoPatchEmbed(nn.Module):
|
691 |
+
def __init__(self, patch_size, in_chans, embed_dim):
|
692 |
+
super().__init__()
|
693 |
+
self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
694 |
+
|
695 |
+
|
696 |
+
class HunyuanVideoPatchEmbedForCleanLatents(nn.Module):
|
697 |
+
def __init__(self, inner_dim):
|
698 |
+
super().__init__()
|
699 |
+
self.proj = nn.Conv3d(16, inner_dim, kernel_size=(1, 2, 2), stride=(1, 2, 2))
|
700 |
+
self.proj_2x = nn.Conv3d(16, inner_dim, kernel_size=(2, 4, 4), stride=(2, 4, 4))
|
701 |
+
self.proj_4x = nn.Conv3d(16, inner_dim, kernel_size=(4, 8, 8), stride=(4, 8, 8))
|
702 |
+
|
703 |
+
@torch.no_grad()
|
704 |
+
def initialize_weight_from_another_conv3d(self, another_layer):
|
705 |
+
weight = another_layer.weight.detach().clone()
|
706 |
+
bias = another_layer.bias.detach().clone()
|
707 |
+
|
708 |
+
sd = {
|
709 |
+
'proj.weight': weight.clone(),
|
710 |
+
'proj.bias': bias.clone(),
|
711 |
+
'proj_2x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=2, hk=2, wk=2) / 8.0,
|
712 |
+
'proj_2x.bias': bias.clone(),
|
713 |
+
'proj_4x.weight': einops.repeat(weight, 'b c t h w -> b c (t tk) (h hk) (w wk)', tk=4, hk=4, wk=4) / 64.0,
|
714 |
+
'proj_4x.bias': bias.clone(),
|
715 |
+
}
|
716 |
+
|
717 |
+
sd = {k: v.clone() for k, v in sd.items()}
|
718 |
+
|
719 |
+
self.load_state_dict(sd)
|
720 |
+
return
|
721 |
+
|
722 |
+
|
723 |
+
class HunyuanVideoTransformer3DModelPacked(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
724 |
+
@register_to_config
|
725 |
+
def __init__(
|
726 |
+
self,
|
727 |
+
in_channels: int = 16,
|
728 |
+
out_channels: int = 16,
|
729 |
+
num_attention_heads: int = 24,
|
730 |
+
attention_head_dim: int = 128,
|
731 |
+
num_layers: int = 20,
|
732 |
+
num_single_layers: int = 40,
|
733 |
+
num_refiner_layers: int = 2,
|
734 |
+
mlp_ratio: float = 4.0,
|
735 |
+
patch_size: int = 2,
|
736 |
+
patch_size_t: int = 1,
|
737 |
+
qk_norm: str = "rms_norm",
|
738 |
+
guidance_embeds: bool = True,
|
739 |
+
text_embed_dim: int = 4096,
|
740 |
+
pooled_projection_dim: int = 768,
|
741 |
+
rope_theta: float = 256.0,
|
742 |
+
rope_axes_dim: Tuple[int] = (16, 56, 56),
|
743 |
+
has_image_proj=False,
|
744 |
+
image_proj_dim=1152,
|
745 |
+
has_clean_x_embedder=False,
|
746 |
+
) -> None:
|
747 |
+
super().__init__()
|
748 |
+
|
749 |
+
inner_dim = num_attention_heads * attention_head_dim
|
750 |
+
out_channels = out_channels or in_channels
|
751 |
+
|
752 |
+
# 1. Latent and condition embedders
|
753 |
+
self.x_embedder = HunyuanVideoPatchEmbed((patch_size_t, patch_size, patch_size), in_channels, inner_dim)
|
754 |
+
self.context_embedder = HunyuanVideoTokenRefiner(
|
755 |
+
text_embed_dim, num_attention_heads, attention_head_dim, num_layers=num_refiner_layers
|
756 |
+
)
|
757 |
+
self.time_text_embed = CombinedTimestepGuidanceTextProjEmbeddings(inner_dim, pooled_projection_dim)
|
758 |
+
|
759 |
+
self.clean_x_embedder = None
|
760 |
+
self.image_projection = None
|
761 |
+
|
762 |
+
# 2. RoPE
|
763 |
+
self.rope = HunyuanVideoRotaryPosEmbed(rope_axes_dim, rope_theta)
|
764 |
+
|
765 |
+
# 3. Dual stream transformer blocks
|
766 |
+
self.transformer_blocks = nn.ModuleList(
|
767 |
+
[
|
768 |
+
HunyuanVideoTransformerBlock(
|
769 |
+
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
|
770 |
+
)
|
771 |
+
for _ in range(num_layers)
|
772 |
+
]
|
773 |
+
)
|
774 |
+
|
775 |
+
# 4. Single stream transformer blocks
|
776 |
+
self.single_transformer_blocks = nn.ModuleList(
|
777 |
+
[
|
778 |
+
HunyuanVideoSingleTransformerBlock(
|
779 |
+
num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm
|
780 |
+
)
|
781 |
+
for _ in range(num_single_layers)
|
782 |
+
]
|
783 |
+
)
|
784 |
+
|
785 |
+
# 5. Output projection
|
786 |
+
self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6)
|
787 |
+
self.proj_out = nn.Linear(inner_dim, patch_size_t * patch_size * patch_size * out_channels)
|
788 |
+
|
789 |
+
self.inner_dim = inner_dim
|
790 |
+
self.use_gradient_checkpointing = False
|
791 |
+
self.enable_teacache = False
|
792 |
+
|
793 |
+
if has_image_proj:
|
794 |
+
self.install_image_projection(image_proj_dim)
|
795 |
+
|
796 |
+
if has_clean_x_embedder:
|
797 |
+
self.install_clean_x_embedder()
|
798 |
+
|
799 |
+
self.high_quality_fp32_output_for_inference = False
|
800 |
+
|
801 |
+
def install_image_projection(self, in_channels):
|
802 |
+
self.image_projection = ClipVisionProjection(in_channels=in_channels, out_channels=self.inner_dim)
|
803 |
+
self.config['has_image_proj'] = True
|
804 |
+
self.config['image_proj_dim'] = in_channels
|
805 |
+
|
806 |
+
def install_clean_x_embedder(self):
|
807 |
+
self.clean_x_embedder = HunyuanVideoPatchEmbedForCleanLatents(self.inner_dim)
|
808 |
+
self.config['has_clean_x_embedder'] = True
|
809 |
+
|
810 |
+
def enable_gradient_checkpointing(self):
|
811 |
+
self.use_gradient_checkpointing = True
|
812 |
+
print('self.use_gradient_checkpointing = True')
|
813 |
+
|
814 |
+
def disable_gradient_checkpointing(self):
|
815 |
+
self.use_gradient_checkpointing = False
|
816 |
+
print('self.use_gradient_checkpointing = False')
|
817 |
+
|
818 |
+
def initialize_teacache(self, enable_teacache=True, num_steps=25, rel_l1_thresh=0.15):
|
819 |
+
self.enable_teacache = enable_teacache
|
820 |
+
self.cnt = 0
|
821 |
+
self.num_steps = num_steps
|
822 |
+
self.rel_l1_thresh = rel_l1_thresh # 0.1 for 1.6x speedup, 0.15 for 2.1x speedup
|
823 |
+
self.accumulated_rel_l1_distance = 0
|
824 |
+
self.previous_modulated_input = None
|
825 |
+
self.previous_residual = None
|
826 |
+
self.teacache_rescale_func = np.poly1d([7.33226126e+02, -4.01131952e+02, 6.75869174e+01, -3.14987800e+00, 9.61237896e-02])
|
827 |
+
|
828 |
+
def gradient_checkpointing_method(self, block, *args):
|
829 |
+
if self.use_gradient_checkpointing:
|
830 |
+
result = torch.utils.checkpoint.checkpoint(block, *args, use_reentrant=False)
|
831 |
+
else:
|
832 |
+
result = block(*args)
|
833 |
+
return result
|
834 |
+
|
835 |
+
def process_input_hidden_states(
|
836 |
+
self,
|
837 |
+
latents, latent_indices=None,
|
838 |
+
clean_latents=None, clean_latent_indices=None,
|
839 |
+
clean_latents_2x=None, clean_latent_2x_indices=None,
|
840 |
+
clean_latents_4x=None, clean_latent_4x_indices=None
|
841 |
+
):
|
842 |
+
hidden_states = self.gradient_checkpointing_method(self.x_embedder.proj, latents)
|
843 |
+
B, C, T, H, W = hidden_states.shape
|
844 |
+
|
845 |
+
if latent_indices is None:
|
846 |
+
latent_indices = torch.arange(0, T).unsqueeze(0).expand(B, -1)
|
847 |
+
|
848 |
+
hidden_states = hidden_states.flatten(2).transpose(1, 2)
|
849 |
+
|
850 |
+
rope_freqs = self.rope(frame_indices=latent_indices, height=H, width=W, device=hidden_states.device)
|
851 |
+
rope_freqs = rope_freqs.flatten(2).transpose(1, 2)
|
852 |
+
|
853 |
+
if clean_latents is not None and clean_latent_indices is not None:
|
854 |
+
clean_latents = clean_latents.to(hidden_states)
|
855 |
+
clean_latents = self.gradient_checkpointing_method(self.clean_x_embedder.proj, clean_latents)
|
856 |
+
clean_latents = clean_latents.flatten(2).transpose(1, 2)
|
857 |
+
|
858 |
+
clean_latent_rope_freqs = self.rope(frame_indices=clean_latent_indices, height=H, width=W, device=clean_latents.device)
|
859 |
+
clean_latent_rope_freqs = clean_latent_rope_freqs.flatten(2).transpose(1, 2)
|
860 |
+
|
861 |
+
hidden_states = torch.cat([clean_latents, hidden_states], dim=1)
|
862 |
+
rope_freqs = torch.cat([clean_latent_rope_freqs, rope_freqs], dim=1)
|
863 |
+
|
864 |
+
if clean_latents_2x is not None and clean_latent_2x_indices is not None:
|
865 |
+
clean_latents_2x = clean_latents_2x.to(hidden_states)
|
866 |
+
clean_latents_2x = pad_for_3d_conv(clean_latents_2x, (2, 4, 4))
|
867 |
+
clean_latents_2x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_2x, clean_latents_2x)
|
868 |
+
clean_latents_2x = clean_latents_2x.flatten(2).transpose(1, 2)
|
869 |
+
|
870 |
+
clean_latent_2x_rope_freqs = self.rope(frame_indices=clean_latent_2x_indices, height=H, width=W, device=clean_latents_2x.device)
|
871 |
+
clean_latent_2x_rope_freqs = pad_for_3d_conv(clean_latent_2x_rope_freqs, (2, 2, 2))
|
872 |
+
clean_latent_2x_rope_freqs = center_down_sample_3d(clean_latent_2x_rope_freqs, (2, 2, 2))
|
873 |
+
clean_latent_2x_rope_freqs = clean_latent_2x_rope_freqs.flatten(2).transpose(1, 2)
|
874 |
+
|
875 |
+
hidden_states = torch.cat([clean_latents_2x, hidden_states], dim=1)
|
876 |
+
rope_freqs = torch.cat([clean_latent_2x_rope_freqs, rope_freqs], dim=1)
|
877 |
+
|
878 |
+
if clean_latents_4x is not None and clean_latent_4x_indices is not None:
|
879 |
+
clean_latents_4x = clean_latents_4x.to(hidden_states)
|
880 |
+
clean_latents_4x = pad_for_3d_conv(clean_latents_4x, (4, 8, 8))
|
881 |
+
clean_latents_4x = self.gradient_checkpointing_method(self.clean_x_embedder.proj_4x, clean_latents_4x)
|
882 |
+
clean_latents_4x = clean_latents_4x.flatten(2).transpose(1, 2)
|
883 |
+
|
884 |
+
clean_latent_4x_rope_freqs = self.rope(frame_indices=clean_latent_4x_indices, height=H, width=W, device=clean_latents_4x.device)
|
885 |
+
clean_latent_4x_rope_freqs = pad_for_3d_conv(clean_latent_4x_rope_freqs, (4, 4, 4))
|
886 |
+
clean_latent_4x_rope_freqs = center_down_sample_3d(clean_latent_4x_rope_freqs, (4, 4, 4))
|
887 |
+
clean_latent_4x_rope_freqs = clean_latent_4x_rope_freqs.flatten(2).transpose(1, 2)
|
888 |
+
|
889 |
+
hidden_states = torch.cat([clean_latents_4x, hidden_states], dim=1)
|
890 |
+
rope_freqs = torch.cat([clean_latent_4x_rope_freqs, rope_freqs], dim=1)
|
891 |
+
|
892 |
+
return hidden_states, rope_freqs
|
893 |
+
|
894 |
+
def forward(
|
895 |
+
self,
|
896 |
+
hidden_states, timestep, encoder_hidden_states, encoder_attention_mask, pooled_projections, guidance,
|
897 |
+
latent_indices=None,
|
898 |
+
clean_latents=None, clean_latent_indices=None,
|
899 |
+
clean_latents_2x=None, clean_latent_2x_indices=None,
|
900 |
+
clean_latents_4x=None, clean_latent_4x_indices=None,
|
901 |
+
image_embeddings=None,
|
902 |
+
attention_kwargs=None, return_dict=True
|
903 |
+
):
|
904 |
+
|
905 |
+
if attention_kwargs is None:
|
906 |
+
attention_kwargs = {}
|
907 |
+
|
908 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
909 |
+
p, p_t = self.config['patch_size'], self.config['patch_size_t']
|
910 |
+
post_patch_num_frames = num_frames // p_t
|
911 |
+
post_patch_height = height // p
|
912 |
+
post_patch_width = width // p
|
913 |
+
original_context_length = post_patch_num_frames * post_patch_height * post_patch_width
|
914 |
+
|
915 |
+
hidden_states, rope_freqs = self.process_input_hidden_states(hidden_states, latent_indices, clean_latents, clean_latent_indices, clean_latents_2x, clean_latent_2x_indices, clean_latents_4x, clean_latent_4x_indices)
|
916 |
+
|
917 |
+
temb = self.gradient_checkpointing_method(self.time_text_embed, timestep, guidance, pooled_projections)
|
918 |
+
encoder_hidden_states = self.gradient_checkpointing_method(self.context_embedder, encoder_hidden_states, timestep, encoder_attention_mask)
|
919 |
+
|
920 |
+
if self.image_projection is not None:
|
921 |
+
assert image_embeddings is not None, 'You must use image embeddings!'
|
922 |
+
extra_encoder_hidden_states = self.gradient_checkpointing_method(self.image_projection, image_embeddings)
|
923 |
+
extra_attention_mask = torch.ones((batch_size, extra_encoder_hidden_states.shape[1]), dtype=encoder_attention_mask.dtype, device=encoder_attention_mask.device)
|
924 |
+
|
925 |
+
# must cat before (not after) encoder_hidden_states, due to attn masking
|
926 |
+
encoder_hidden_states = torch.cat([extra_encoder_hidden_states, encoder_hidden_states], dim=1)
|
927 |
+
encoder_attention_mask = torch.cat([extra_attention_mask, encoder_attention_mask], dim=1)
|
928 |
+
|
929 |
+
with torch.no_grad():
|
930 |
+
if batch_size == 1:
|
931 |
+
# When batch size is 1, we do not need any masks or var-len funcs since cropping is mathematically same to what we want
|
932 |
+
# If they are not same, then their impls are wrong. Ours are always the correct one.
|
933 |
+
text_len = encoder_attention_mask.sum().item()
|
934 |
+
encoder_hidden_states = encoder_hidden_states[:, :text_len]
|
935 |
+
attention_mask = None, None, None, None
|
936 |
+
else:
|
937 |
+
img_seq_len = hidden_states.shape[1]
|
938 |
+
txt_seq_len = encoder_hidden_states.shape[1]
|
939 |
+
|
940 |
+
cu_seqlens_q = get_cu_seqlens(encoder_attention_mask, img_seq_len)
|
941 |
+
cu_seqlens_kv = cu_seqlens_q
|
942 |
+
max_seqlen_q = img_seq_len + txt_seq_len
|
943 |
+
max_seqlen_kv = max_seqlen_q
|
944 |
+
|
945 |
+
attention_mask = cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv
|
946 |
+
|
947 |
+
if self.enable_teacache:
|
948 |
+
modulated_inp = self.transformer_blocks[0].norm1(hidden_states, emb=temb)[0]
|
949 |
+
|
950 |
+
if self.cnt == 0 or self.cnt == self.num_steps-1:
|
951 |
+
should_calc = True
|
952 |
+
self.accumulated_rel_l1_distance = 0
|
953 |
+
else:
|
954 |
+
curr_rel_l1 = ((modulated_inp - self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()
|
955 |
+
self.accumulated_rel_l1_distance += self.teacache_rescale_func(curr_rel_l1)
|
956 |
+
should_calc = self.accumulated_rel_l1_distance >= self.rel_l1_thresh
|
957 |
+
|
958 |
+
if should_calc:
|
959 |
+
self.accumulated_rel_l1_distance = 0
|
960 |
+
|
961 |
+
self.previous_modulated_input = modulated_inp
|
962 |
+
self.cnt += 1
|
963 |
+
|
964 |
+
if self.cnt == self.num_steps:
|
965 |
+
self.cnt = 0
|
966 |
+
|
967 |
+
if not should_calc:
|
968 |
+
hidden_states = hidden_states + self.previous_residual
|
969 |
+
else:
|
970 |
+
ori_hidden_states = hidden_states.clone()
|
971 |
+
|
972 |
+
for block_id, block in enumerate(self.transformer_blocks):
|
973 |
+
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
974 |
+
block,
|
975 |
+
hidden_states,
|
976 |
+
encoder_hidden_states,
|
977 |
+
temb,
|
978 |
+
attention_mask,
|
979 |
+
rope_freqs
|
980 |
+
)
|
981 |
+
|
982 |
+
for block_id, block in enumerate(self.single_transformer_blocks):
|
983 |
+
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
984 |
+
block,
|
985 |
+
hidden_states,
|
986 |
+
encoder_hidden_states,
|
987 |
+
temb,
|
988 |
+
attention_mask,
|
989 |
+
rope_freqs
|
990 |
+
)
|
991 |
+
|
992 |
+
self.previous_residual = hidden_states - ori_hidden_states
|
993 |
+
else:
|
994 |
+
for block_id, block in enumerate(self.transformer_blocks):
|
995 |
+
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
996 |
+
block,
|
997 |
+
hidden_states,
|
998 |
+
encoder_hidden_states,
|
999 |
+
temb,
|
1000 |
+
attention_mask,
|
1001 |
+
rope_freqs
|
1002 |
+
)
|
1003 |
+
|
1004 |
+
for block_id, block in enumerate(self.single_transformer_blocks):
|
1005 |
+
hidden_states, encoder_hidden_states = self.gradient_checkpointing_method(
|
1006 |
+
block,
|
1007 |
+
hidden_states,
|
1008 |
+
encoder_hidden_states,
|
1009 |
+
temb,
|
1010 |
+
attention_mask,
|
1011 |
+
rope_freqs
|
1012 |
+
)
|
1013 |
+
|
1014 |
+
hidden_states = self.gradient_checkpointing_method(self.norm_out, hidden_states, temb)
|
1015 |
+
|
1016 |
+
hidden_states = hidden_states[:, -original_context_length:, :]
|
1017 |
+
|
1018 |
+
if self.high_quality_fp32_output_for_inference:
|
1019 |
+
hidden_states = hidden_states.to(dtype=torch.float32)
|
1020 |
+
if self.proj_out.weight.dtype != torch.float32:
|
1021 |
+
self.proj_out.to(dtype=torch.float32)
|
1022 |
+
|
1023 |
+
hidden_states = self.gradient_checkpointing_method(self.proj_out, hidden_states)
|
1024 |
+
|
1025 |
+
hidden_states = einops.rearrange(hidden_states, 'b (t h w) (c pt ph pw) -> b c (t pt) (h ph) (w pw)',
|
1026 |
+
t=post_patch_num_frames, h=post_patch_height, w=post_patch_width,
|
1027 |
+
pt=p_t, ph=p, pw=p)
|
1028 |
+
|
1029 |
+
if return_dict:
|
1030 |
+
return Transformer2DModelOutput(sample=hidden_states)
|
1031 |
+
|
1032 |
+
return hidden_states,
|
diffusers_helper/pipelines/k_diffusion_hunyuan.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import math
|
3 |
+
|
4 |
+
from diffusers_helper.k_diffusion.uni_pc_fm import sample_unipc
|
5 |
+
from diffusers_helper.k_diffusion.wrapper import fm_wrapper
|
6 |
+
from diffusers_helper.utils import repeat_to_batch_size
|
7 |
+
|
8 |
+
|
9 |
+
def flux_time_shift(t, mu=1.15, sigma=1.0):
|
10 |
+
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
11 |
+
|
12 |
+
|
13 |
+
def calculate_flux_mu(context_length, x1=256, y1=0.5, x2=4096, y2=1.15, exp_max=7.0):
|
14 |
+
k = (y2 - y1) / (x2 - x1)
|
15 |
+
b = y1 - k * x1
|
16 |
+
mu = k * context_length + b
|
17 |
+
mu = min(mu, math.log(exp_max))
|
18 |
+
return mu
|
19 |
+
|
20 |
+
|
21 |
+
def get_flux_sigmas_from_mu(n, mu):
|
22 |
+
sigmas = torch.linspace(1, 0, steps=n + 1)
|
23 |
+
sigmas = flux_time_shift(sigmas, mu=mu)
|
24 |
+
return sigmas
|
25 |
+
|
26 |
+
|
27 |
+
@torch.inference_mode()
|
28 |
+
def sample_hunyuan(
|
29 |
+
transformer,
|
30 |
+
sampler='unipc',
|
31 |
+
initial_latent=None,
|
32 |
+
concat_latent=None,
|
33 |
+
strength=1.0,
|
34 |
+
width=512,
|
35 |
+
height=512,
|
36 |
+
frames=16,
|
37 |
+
real_guidance_scale=1.0,
|
38 |
+
distilled_guidance_scale=6.0,
|
39 |
+
guidance_rescale=0.0,
|
40 |
+
shift=None,
|
41 |
+
num_inference_steps=25,
|
42 |
+
batch_size=None,
|
43 |
+
generator=None,
|
44 |
+
prompt_embeds=None,
|
45 |
+
prompt_embeds_mask=None,
|
46 |
+
prompt_poolers=None,
|
47 |
+
negative_prompt_embeds=None,
|
48 |
+
negative_prompt_embeds_mask=None,
|
49 |
+
negative_prompt_poolers=None,
|
50 |
+
dtype=torch.bfloat16,
|
51 |
+
device=None,
|
52 |
+
negative_kwargs=None,
|
53 |
+
callback=None,
|
54 |
+
**kwargs,
|
55 |
+
):
|
56 |
+
device = device or transformer.device
|
57 |
+
|
58 |
+
if batch_size is None:
|
59 |
+
batch_size = int(prompt_embeds.shape[0])
|
60 |
+
|
61 |
+
latents = torch.randn((batch_size, 16, (frames + 3) // 4, height // 8, width // 8), generator=generator, device=generator.device).to(device=device, dtype=torch.float32)
|
62 |
+
|
63 |
+
B, C, T, H, W = latents.shape
|
64 |
+
seq_length = T * H * W // 4
|
65 |
+
|
66 |
+
if shift is None:
|
67 |
+
mu = calculate_flux_mu(seq_length, exp_max=7.0)
|
68 |
+
else:
|
69 |
+
mu = math.log(shift)
|
70 |
+
|
71 |
+
sigmas = get_flux_sigmas_from_mu(num_inference_steps, mu).to(device)
|
72 |
+
|
73 |
+
k_model = fm_wrapper(transformer)
|
74 |
+
|
75 |
+
if initial_latent is not None:
|
76 |
+
sigmas = sigmas * strength
|
77 |
+
first_sigma = sigmas[0].to(device=device, dtype=torch.float32)
|
78 |
+
initial_latent = initial_latent.to(device=device, dtype=torch.float32)
|
79 |
+
latents = initial_latent.float() * (1.0 - first_sigma) + latents.float() * first_sigma
|
80 |
+
|
81 |
+
if concat_latent is not None:
|
82 |
+
concat_latent = concat_latent.to(latents)
|
83 |
+
|
84 |
+
distilled_guidance = torch.tensor([distilled_guidance_scale * 1000.0] * batch_size).to(device=device, dtype=dtype)
|
85 |
+
|
86 |
+
prompt_embeds = repeat_to_batch_size(prompt_embeds, batch_size)
|
87 |
+
prompt_embeds_mask = repeat_to_batch_size(prompt_embeds_mask, batch_size)
|
88 |
+
prompt_poolers = repeat_to_batch_size(prompt_poolers, batch_size)
|
89 |
+
negative_prompt_embeds = repeat_to_batch_size(negative_prompt_embeds, batch_size)
|
90 |
+
negative_prompt_embeds_mask = repeat_to_batch_size(negative_prompt_embeds_mask, batch_size)
|
91 |
+
negative_prompt_poolers = repeat_to_batch_size(negative_prompt_poolers, batch_size)
|
92 |
+
concat_latent = repeat_to_batch_size(concat_latent, batch_size)
|
93 |
+
|
94 |
+
sampler_kwargs = dict(
|
95 |
+
dtype=dtype,
|
96 |
+
cfg_scale=real_guidance_scale,
|
97 |
+
cfg_rescale=guidance_rescale,
|
98 |
+
concat_latent=concat_latent,
|
99 |
+
positive=dict(
|
100 |
+
pooled_projections=prompt_poolers,
|
101 |
+
encoder_hidden_states=prompt_embeds,
|
102 |
+
encoder_attention_mask=prompt_embeds_mask,
|
103 |
+
guidance=distilled_guidance,
|
104 |
+
**kwargs,
|
105 |
+
),
|
106 |
+
negative=dict(
|
107 |
+
pooled_projections=negative_prompt_poolers,
|
108 |
+
encoder_hidden_states=negative_prompt_embeds,
|
109 |
+
encoder_attention_mask=negative_prompt_embeds_mask,
|
110 |
+
guidance=distilled_guidance,
|
111 |
+
**(kwargs if negative_kwargs is None else {**kwargs, **negative_kwargs}),
|
112 |
+
)
|
113 |
+
)
|
114 |
+
|
115 |
+
if sampler == 'unipc':
|
116 |
+
results = sample_unipc(k_model, latents, sigmas, extra_args=sampler_kwargs, disable=False, callback=callback)
|
117 |
+
else:
|
118 |
+
raise NotImplementedError(f'Sampler {sampler} is not supported.')
|
119 |
+
|
120 |
+
return results
|
diffusers_helper/thread_utils.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
|
3 |
+
from threading import Thread, Lock
|
4 |
+
|
5 |
+
|
6 |
+
class Listener:
|
7 |
+
task_queue = []
|
8 |
+
lock = Lock()
|
9 |
+
thread = None
|
10 |
+
|
11 |
+
@classmethod
|
12 |
+
def _process_tasks(cls):
|
13 |
+
while True:
|
14 |
+
task = None
|
15 |
+
with cls.lock:
|
16 |
+
if cls.task_queue:
|
17 |
+
task = cls.task_queue.pop(0)
|
18 |
+
|
19 |
+
if task is None:
|
20 |
+
time.sleep(0.001)
|
21 |
+
continue
|
22 |
+
|
23 |
+
func, args, kwargs = task
|
24 |
+
try:
|
25 |
+
func(*args, **kwargs)
|
26 |
+
except Exception as e:
|
27 |
+
print(f"Error in listener thread: {e}")
|
28 |
+
|
29 |
+
@classmethod
|
30 |
+
def add_task(cls, func, *args, **kwargs):
|
31 |
+
with cls.lock:
|
32 |
+
cls.task_queue.append((func, args, kwargs))
|
33 |
+
|
34 |
+
if cls.thread is None:
|
35 |
+
cls.thread = Thread(target=cls._process_tasks, daemon=True)
|
36 |
+
cls.thread.start()
|
37 |
+
|
38 |
+
|
39 |
+
def async_run(func, *args, **kwargs):
|
40 |
+
Listener.add_task(func, *args, **kwargs)
|
41 |
+
|
42 |
+
|
43 |
+
class FIFOQueue:
|
44 |
+
def __init__(self):
|
45 |
+
self.queue = []
|
46 |
+
self.lock = Lock()
|
47 |
+
|
48 |
+
def push(self, item):
|
49 |
+
with self.lock:
|
50 |
+
self.queue.append(item)
|
51 |
+
|
52 |
+
def pop(self):
|
53 |
+
with self.lock:
|
54 |
+
if self.queue:
|
55 |
+
return self.queue.pop(0)
|
56 |
+
return None
|
57 |
+
|
58 |
+
def top(self):
|
59 |
+
with self.lock:
|
60 |
+
if self.queue:
|
61 |
+
return self.queue[0]
|
62 |
+
return None
|
63 |
+
|
64 |
+
def next(self):
|
65 |
+
while True:
|
66 |
+
with self.lock:
|
67 |
+
if self.queue:
|
68 |
+
return self.queue.pop(0)
|
69 |
+
|
70 |
+
time.sleep(0.001)
|
71 |
+
|
72 |
+
|
73 |
+
class AsyncStream:
|
74 |
+
def __init__(self):
|
75 |
+
self.input_queue = FIFOQueue()
|
76 |
+
self.output_queue = FIFOQueue()
|
diffusers_helper/utils.py
ADDED
@@ -0,0 +1,613 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import json
|
4 |
+
import random
|
5 |
+
import glob
|
6 |
+
import torch
|
7 |
+
import einops
|
8 |
+
import numpy as np
|
9 |
+
import datetime
|
10 |
+
import torchvision
|
11 |
+
|
12 |
+
import safetensors.torch as sf
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
|
16 |
+
def min_resize(x, m):
|
17 |
+
if x.shape[0] < x.shape[1]:
|
18 |
+
s0 = m
|
19 |
+
s1 = int(float(m) / float(x.shape[0]) * float(x.shape[1]))
|
20 |
+
else:
|
21 |
+
s0 = int(float(m) / float(x.shape[1]) * float(x.shape[0]))
|
22 |
+
s1 = m
|
23 |
+
new_max = max(s1, s0)
|
24 |
+
raw_max = max(x.shape[0], x.shape[1])
|
25 |
+
if new_max < raw_max:
|
26 |
+
interpolation = cv2.INTER_AREA
|
27 |
+
else:
|
28 |
+
interpolation = cv2.INTER_LANCZOS4
|
29 |
+
y = cv2.resize(x, (s1, s0), interpolation=interpolation)
|
30 |
+
return y
|
31 |
+
|
32 |
+
|
33 |
+
def d_resize(x, y):
|
34 |
+
H, W, C = y.shape
|
35 |
+
new_min = min(H, W)
|
36 |
+
raw_min = min(x.shape[0], x.shape[1])
|
37 |
+
if new_min < raw_min:
|
38 |
+
interpolation = cv2.INTER_AREA
|
39 |
+
else:
|
40 |
+
interpolation = cv2.INTER_LANCZOS4
|
41 |
+
y = cv2.resize(x, (W, H), interpolation=interpolation)
|
42 |
+
return y
|
43 |
+
|
44 |
+
|
45 |
+
def resize_and_center_crop(image, target_width, target_height):
|
46 |
+
if target_height == image.shape[0] and target_width == image.shape[1]:
|
47 |
+
return image
|
48 |
+
|
49 |
+
pil_image = Image.fromarray(image)
|
50 |
+
original_width, original_height = pil_image.size
|
51 |
+
scale_factor = max(target_width / original_width, target_height / original_height)
|
52 |
+
resized_width = int(round(original_width * scale_factor))
|
53 |
+
resized_height = int(round(original_height * scale_factor))
|
54 |
+
resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS)
|
55 |
+
left = (resized_width - target_width) / 2
|
56 |
+
top = (resized_height - target_height) / 2
|
57 |
+
right = (resized_width + target_width) / 2
|
58 |
+
bottom = (resized_height + target_height) / 2
|
59 |
+
cropped_image = resized_image.crop((left, top, right, bottom))
|
60 |
+
return np.array(cropped_image)
|
61 |
+
|
62 |
+
|
63 |
+
def resize_and_center_crop_pytorch(image, target_width, target_height):
|
64 |
+
B, C, H, W = image.shape
|
65 |
+
|
66 |
+
if H == target_height and W == target_width:
|
67 |
+
return image
|
68 |
+
|
69 |
+
scale_factor = max(target_width / W, target_height / H)
|
70 |
+
resized_width = int(round(W * scale_factor))
|
71 |
+
resized_height = int(round(H * scale_factor))
|
72 |
+
|
73 |
+
resized = torch.nn.functional.interpolate(image, size=(resized_height, resized_width), mode='bilinear', align_corners=False)
|
74 |
+
|
75 |
+
top = (resized_height - target_height) // 2
|
76 |
+
left = (resized_width - target_width) // 2
|
77 |
+
cropped = resized[:, :, top:top + target_height, left:left + target_width]
|
78 |
+
|
79 |
+
return cropped
|
80 |
+
|
81 |
+
|
82 |
+
def resize_without_crop(image, target_width, target_height):
|
83 |
+
if target_height == image.shape[0] and target_width == image.shape[1]:
|
84 |
+
return image
|
85 |
+
|
86 |
+
pil_image = Image.fromarray(image)
|
87 |
+
resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
|
88 |
+
return np.array(resized_image)
|
89 |
+
|
90 |
+
|
91 |
+
def just_crop(image, w, h):
|
92 |
+
if h == image.shape[0] and w == image.shape[1]:
|
93 |
+
return image
|
94 |
+
|
95 |
+
original_height, original_width = image.shape[:2]
|
96 |
+
k = min(original_height / h, original_width / w)
|
97 |
+
new_width = int(round(w * k))
|
98 |
+
new_height = int(round(h * k))
|
99 |
+
x_start = (original_width - new_width) // 2
|
100 |
+
y_start = (original_height - new_height) // 2
|
101 |
+
cropped_image = image[y_start:y_start + new_height, x_start:x_start + new_width]
|
102 |
+
return cropped_image
|
103 |
+
|
104 |
+
|
105 |
+
def write_to_json(data, file_path):
|
106 |
+
temp_file_path = file_path + ".tmp"
|
107 |
+
with open(temp_file_path, 'wt', encoding='utf-8') as temp_file:
|
108 |
+
json.dump(data, temp_file, indent=4)
|
109 |
+
os.replace(temp_file_path, file_path)
|
110 |
+
return
|
111 |
+
|
112 |
+
|
113 |
+
def read_from_json(file_path):
|
114 |
+
with open(file_path, 'rt', encoding='utf-8') as file:
|
115 |
+
data = json.load(file)
|
116 |
+
return data
|
117 |
+
|
118 |
+
|
119 |
+
def get_active_parameters(m):
|
120 |
+
return {k: v for k, v in m.named_parameters() if v.requires_grad}
|
121 |
+
|
122 |
+
|
123 |
+
def cast_training_params(m, dtype=torch.float32):
|
124 |
+
result = {}
|
125 |
+
for n, param in m.named_parameters():
|
126 |
+
if param.requires_grad:
|
127 |
+
param.data = param.to(dtype)
|
128 |
+
result[n] = param
|
129 |
+
return result
|
130 |
+
|
131 |
+
|
132 |
+
def separate_lora_AB(parameters, B_patterns=None):
|
133 |
+
parameters_normal = {}
|
134 |
+
parameters_B = {}
|
135 |
+
|
136 |
+
if B_patterns is None:
|
137 |
+
B_patterns = ['.lora_B.', '__zero__']
|
138 |
+
|
139 |
+
for k, v in parameters.items():
|
140 |
+
if any(B_pattern in k for B_pattern in B_patterns):
|
141 |
+
parameters_B[k] = v
|
142 |
+
else:
|
143 |
+
parameters_normal[k] = v
|
144 |
+
|
145 |
+
return parameters_normal, parameters_B
|
146 |
+
|
147 |
+
|
148 |
+
def set_attr_recursive(obj, attr, value):
|
149 |
+
attrs = attr.split(".")
|
150 |
+
for name in attrs[:-1]:
|
151 |
+
obj = getattr(obj, name)
|
152 |
+
setattr(obj, attrs[-1], value)
|
153 |
+
return
|
154 |
+
|
155 |
+
|
156 |
+
def print_tensor_list_size(tensors):
|
157 |
+
total_size = 0
|
158 |
+
total_elements = 0
|
159 |
+
|
160 |
+
if isinstance(tensors, dict):
|
161 |
+
tensors = tensors.values()
|
162 |
+
|
163 |
+
for tensor in tensors:
|
164 |
+
total_size += tensor.nelement() * tensor.element_size()
|
165 |
+
total_elements += tensor.nelement()
|
166 |
+
|
167 |
+
total_size_MB = total_size / (1024 ** 2)
|
168 |
+
total_elements_B = total_elements / 1e9
|
169 |
+
|
170 |
+
print(f"Total number of tensors: {len(tensors)}")
|
171 |
+
print(f"Total size of tensors: {total_size_MB:.2f} MB")
|
172 |
+
print(f"Total number of parameters: {total_elements_B:.3f} billion")
|
173 |
+
return
|
174 |
+
|
175 |
+
|
176 |
+
@torch.no_grad()
|
177 |
+
def batch_mixture(a, b=None, probability_a=0.5, mask_a=None):
|
178 |
+
batch_size = a.size(0)
|
179 |
+
|
180 |
+
if b is None:
|
181 |
+
b = torch.zeros_like(a)
|
182 |
+
|
183 |
+
if mask_a is None:
|
184 |
+
mask_a = torch.rand(batch_size) < probability_a
|
185 |
+
|
186 |
+
mask_a = mask_a.to(a.device)
|
187 |
+
mask_a = mask_a.reshape((batch_size,) + (1,) * (a.dim() - 1))
|
188 |
+
result = torch.where(mask_a, a, b)
|
189 |
+
return result
|
190 |
+
|
191 |
+
|
192 |
+
@torch.no_grad()
|
193 |
+
def zero_module(module):
|
194 |
+
for p in module.parameters():
|
195 |
+
p.detach().zero_()
|
196 |
+
return module
|
197 |
+
|
198 |
+
|
199 |
+
@torch.no_grad()
|
200 |
+
def supress_lower_channels(m, k, alpha=0.01):
|
201 |
+
data = m.weight.data.clone()
|
202 |
+
|
203 |
+
assert int(data.shape[1]) >= k
|
204 |
+
|
205 |
+
data[:, :k] = data[:, :k] * alpha
|
206 |
+
m.weight.data = data.contiguous().clone()
|
207 |
+
return m
|
208 |
+
|
209 |
+
|
210 |
+
def freeze_module(m):
|
211 |
+
if not hasattr(m, '_forward_inside_frozen_module'):
|
212 |
+
m._forward_inside_frozen_module = m.forward
|
213 |
+
m.requires_grad_(False)
|
214 |
+
m.forward = torch.no_grad()(m.forward)
|
215 |
+
return m
|
216 |
+
|
217 |
+
|
218 |
+
def get_latest_safetensors(folder_path):
|
219 |
+
safetensors_files = glob.glob(os.path.join(folder_path, '*.safetensors'))
|
220 |
+
|
221 |
+
if not safetensors_files:
|
222 |
+
raise ValueError('No file to resume!')
|
223 |
+
|
224 |
+
latest_file = max(safetensors_files, key=os.path.getmtime)
|
225 |
+
latest_file = os.path.abspath(os.path.realpath(latest_file))
|
226 |
+
return latest_file
|
227 |
+
|
228 |
+
|
229 |
+
def generate_random_prompt_from_tags(tags_str, min_length=3, max_length=32):
|
230 |
+
tags = tags_str.split(', ')
|
231 |
+
tags = random.sample(tags, k=min(random.randint(min_length, max_length), len(tags)))
|
232 |
+
prompt = ', '.join(tags)
|
233 |
+
return prompt
|
234 |
+
|
235 |
+
|
236 |
+
def interpolate_numbers(a, b, n, round_to_int=False, gamma=1.0):
|
237 |
+
numbers = a + (b - a) * (np.linspace(0, 1, n) ** gamma)
|
238 |
+
if round_to_int:
|
239 |
+
numbers = np.round(numbers).astype(int)
|
240 |
+
return numbers.tolist()
|
241 |
+
|
242 |
+
|
243 |
+
def uniform_random_by_intervals(inclusive, exclusive, n, round_to_int=False):
|
244 |
+
edges = np.linspace(0, 1, n + 1)
|
245 |
+
points = np.random.uniform(edges[:-1], edges[1:])
|
246 |
+
numbers = inclusive + (exclusive - inclusive) * points
|
247 |
+
if round_to_int:
|
248 |
+
numbers = np.round(numbers).astype(int)
|
249 |
+
return numbers.tolist()
|
250 |
+
|
251 |
+
|
252 |
+
def soft_append_bcthw(history, current, overlap=0):
|
253 |
+
if overlap <= 0:
|
254 |
+
return torch.cat([history, current], dim=2)
|
255 |
+
|
256 |
+
assert history.shape[2] >= overlap, f"History length ({history.shape[2]}) must be >= overlap ({overlap})"
|
257 |
+
assert current.shape[2] >= overlap, f"Current length ({current.shape[2]}) must be >= overlap ({overlap})"
|
258 |
+
|
259 |
+
weights = torch.linspace(1, 0, overlap, dtype=history.dtype, device=history.device).view(1, 1, -1, 1, 1)
|
260 |
+
blended = weights * history[:, :, -overlap:] + (1 - weights) * current[:, :, :overlap]
|
261 |
+
output = torch.cat([history[:, :, :-overlap], blended, current[:, :, overlap:]], dim=2)
|
262 |
+
|
263 |
+
return output.to(history)
|
264 |
+
|
265 |
+
|
266 |
+
def save_bcthw_as_mp4(x, output_filename, fps=10):
|
267 |
+
b, c, t, h, w = x.shape
|
268 |
+
|
269 |
+
per_row = b
|
270 |
+
for p in [6, 5, 4, 3, 2]:
|
271 |
+
if b % p == 0:
|
272 |
+
per_row = p
|
273 |
+
break
|
274 |
+
|
275 |
+
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
|
276 |
+
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
|
277 |
+
x = x.detach().cpu().to(torch.uint8)
|
278 |
+
x = einops.rearrange(x, '(m n) c t h w -> t (m h) (n w) c', n=per_row)
|
279 |
+
torchvision.io.write_video(output_filename, x, fps=fps, video_codec='h264', options={'crf': '0'})
|
280 |
+
return x
|
281 |
+
|
282 |
+
|
283 |
+
def save_bcthw_as_png(x, output_filename):
|
284 |
+
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
|
285 |
+
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
|
286 |
+
x = x.detach().cpu().to(torch.uint8)
|
287 |
+
x = einops.rearrange(x, 'b c t h w -> c (b h) (t w)')
|
288 |
+
torchvision.io.write_png(x, output_filename)
|
289 |
+
return output_filename
|
290 |
+
|
291 |
+
|
292 |
+
def save_bchw_as_png(x, output_filename):
|
293 |
+
os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
|
294 |
+
x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
|
295 |
+
x = x.detach().cpu().to(torch.uint8)
|
296 |
+
x = einops.rearrange(x, 'b c h w -> c h (b w)')
|
297 |
+
torchvision.io.write_png(x, output_filename)
|
298 |
+
return output_filename
|
299 |
+
|
300 |
+
|
301 |
+
def add_tensors_with_padding(tensor1, tensor2):
|
302 |
+
if tensor1.shape == tensor2.shape:
|
303 |
+
return tensor1 + tensor2
|
304 |
+
|
305 |
+
shape1 = tensor1.shape
|
306 |
+
shape2 = tensor2.shape
|
307 |
+
|
308 |
+
new_shape = tuple(max(s1, s2) for s1, s2 in zip(shape1, shape2))
|
309 |
+
|
310 |
+
padded_tensor1 = torch.zeros(new_shape)
|
311 |
+
padded_tensor2 = torch.zeros(new_shape)
|
312 |
+
|
313 |
+
padded_tensor1[tuple(slice(0, s) for s in shape1)] = tensor1
|
314 |
+
padded_tensor2[tuple(slice(0, s) for s in shape2)] = tensor2
|
315 |
+
|
316 |
+
result = padded_tensor1 + padded_tensor2
|
317 |
+
return result
|
318 |
+
|
319 |
+
|
320 |
+
def print_free_mem():
|
321 |
+
torch.cuda.empty_cache()
|
322 |
+
free_mem, total_mem = torch.cuda.mem_get_info(0)
|
323 |
+
free_mem_mb = free_mem / (1024 ** 2)
|
324 |
+
total_mem_mb = total_mem / (1024 ** 2)
|
325 |
+
print(f"Free memory: {free_mem_mb:.2f} MB")
|
326 |
+
print(f"Total memory: {total_mem_mb:.2f} MB")
|
327 |
+
return
|
328 |
+
|
329 |
+
|
330 |
+
def print_gpu_parameters(device, state_dict, log_count=1):
|
331 |
+
summary = {"device": device, "keys_count": len(state_dict)}
|
332 |
+
|
333 |
+
logged_params = {}
|
334 |
+
for i, (key, tensor) in enumerate(state_dict.items()):
|
335 |
+
if i >= log_count:
|
336 |
+
break
|
337 |
+
logged_params[key] = tensor.flatten()[:3].tolist()
|
338 |
+
|
339 |
+
summary["params"] = logged_params
|
340 |
+
|
341 |
+
print(str(summary))
|
342 |
+
return
|
343 |
+
|
344 |
+
|
345 |
+
def visualize_txt_as_img(width, height, text, font_path='font/DejaVuSans.ttf', size=18):
|
346 |
+
from PIL import Image, ImageDraw, ImageFont
|
347 |
+
|
348 |
+
txt = Image.new("RGB", (width, height), color="white")
|
349 |
+
draw = ImageDraw.Draw(txt)
|
350 |
+
font = ImageFont.truetype(font_path, size=size)
|
351 |
+
|
352 |
+
if text == '':
|
353 |
+
return np.array(txt)
|
354 |
+
|
355 |
+
# Split text into lines that fit within the image width
|
356 |
+
lines = []
|
357 |
+
words = text.split()
|
358 |
+
current_line = words[0]
|
359 |
+
|
360 |
+
for word in words[1:]:
|
361 |
+
line_with_word = f"{current_line} {word}"
|
362 |
+
if draw.textbbox((0, 0), line_with_word, font=font)[2] <= width:
|
363 |
+
current_line = line_with_word
|
364 |
+
else:
|
365 |
+
lines.append(current_line)
|
366 |
+
current_line = word
|
367 |
+
|
368 |
+
lines.append(current_line)
|
369 |
+
|
370 |
+
# Draw the text line by line
|
371 |
+
y = 0
|
372 |
+
line_height = draw.textbbox((0, 0), "A", font=font)[3]
|
373 |
+
|
374 |
+
for line in lines:
|
375 |
+
if y + line_height > height:
|
376 |
+
break # stop drawing if the next line will be outside the image
|
377 |
+
draw.text((0, y), line, fill="black", font=font)
|
378 |
+
y += line_height
|
379 |
+
|
380 |
+
return np.array(txt)
|
381 |
+
|
382 |
+
|
383 |
+
def blue_mark(x):
|
384 |
+
x = x.copy()
|
385 |
+
c = x[:, :, 2]
|
386 |
+
b = cv2.blur(c, (9, 9))
|
387 |
+
x[:, :, 2] = ((c - b) * 16.0 + b).clip(-1, 1)
|
388 |
+
return x
|
389 |
+
|
390 |
+
|
391 |
+
def green_mark(x):
|
392 |
+
x = x.copy()
|
393 |
+
x[:, :, 2] = -1
|
394 |
+
x[:, :, 0] = -1
|
395 |
+
return x
|
396 |
+
|
397 |
+
|
398 |
+
def frame_mark(x):
|
399 |
+
x = x.copy()
|
400 |
+
x[:64] = -1
|
401 |
+
x[-64:] = -1
|
402 |
+
x[:, :8] = 1
|
403 |
+
x[:, -8:] = 1
|
404 |
+
return x
|
405 |
+
|
406 |
+
|
407 |
+
@torch.inference_mode()
|
408 |
+
def pytorch2numpy(imgs):
|
409 |
+
results = []
|
410 |
+
for x in imgs:
|
411 |
+
y = x.movedim(0, -1)
|
412 |
+
y = y * 127.5 + 127.5
|
413 |
+
y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
|
414 |
+
results.append(y)
|
415 |
+
return results
|
416 |
+
|
417 |
+
|
418 |
+
@torch.inference_mode()
|
419 |
+
def numpy2pytorch(imgs):
|
420 |
+
h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.5 - 1.0
|
421 |
+
h = h.movedim(-1, 1)
|
422 |
+
return h
|
423 |
+
|
424 |
+
|
425 |
+
@torch.no_grad()
|
426 |
+
def duplicate_prefix_to_suffix(x, count, zero_out=False):
|
427 |
+
if zero_out:
|
428 |
+
return torch.cat([x, torch.zeros_like(x[:count])], dim=0)
|
429 |
+
else:
|
430 |
+
return torch.cat([x, x[:count]], dim=0)
|
431 |
+
|
432 |
+
|
433 |
+
def weighted_mse(a, b, weight):
|
434 |
+
return torch.mean(weight.float() * (a.float() - b.float()) ** 2)
|
435 |
+
|
436 |
+
|
437 |
+
def clamped_linear_interpolation(x, x_min, y_min, x_max, y_max, sigma=1.0):
|
438 |
+
x = (x - x_min) / (x_max - x_min)
|
439 |
+
x = max(0.0, min(x, 1.0))
|
440 |
+
x = x ** sigma
|
441 |
+
return y_min + x * (y_max - y_min)
|
442 |
+
|
443 |
+
|
444 |
+
def expand_to_dims(x, target_dims):
|
445 |
+
return x.view(*x.shape, *([1] * max(0, target_dims - x.dim())))
|
446 |
+
|
447 |
+
|
448 |
+
def repeat_to_batch_size(tensor: torch.Tensor, batch_size: int):
|
449 |
+
if tensor is None:
|
450 |
+
return None
|
451 |
+
|
452 |
+
first_dim = tensor.shape[0]
|
453 |
+
|
454 |
+
if first_dim == batch_size:
|
455 |
+
return tensor
|
456 |
+
|
457 |
+
if batch_size % first_dim != 0:
|
458 |
+
raise ValueError(f"Cannot evenly repeat first dim {first_dim} to match batch_size {batch_size}.")
|
459 |
+
|
460 |
+
repeat_times = batch_size // first_dim
|
461 |
+
|
462 |
+
return tensor.repeat(repeat_times, *[1] * (tensor.dim() - 1))
|
463 |
+
|
464 |
+
|
465 |
+
def dim5(x):
|
466 |
+
return expand_to_dims(x, 5)
|
467 |
+
|
468 |
+
|
469 |
+
def dim4(x):
|
470 |
+
return expand_to_dims(x, 4)
|
471 |
+
|
472 |
+
|
473 |
+
def dim3(x):
|
474 |
+
return expand_to_dims(x, 3)
|
475 |
+
|
476 |
+
|
477 |
+
def crop_or_pad_yield_mask(x, length):
|
478 |
+
B, F, C = x.shape
|
479 |
+
device = x.device
|
480 |
+
dtype = x.dtype
|
481 |
+
|
482 |
+
if F < length:
|
483 |
+
y = torch.zeros((B, length, C), dtype=dtype, device=device)
|
484 |
+
mask = torch.zeros((B, length), dtype=torch.bool, device=device)
|
485 |
+
y[:, :F, :] = x
|
486 |
+
mask[:, :F] = True
|
487 |
+
return y, mask
|
488 |
+
|
489 |
+
return x[:, :length, :], torch.ones((B, length), dtype=torch.bool, device=device)
|
490 |
+
|
491 |
+
|
492 |
+
def extend_dim(x, dim, minimal_length, zero_pad=False):
|
493 |
+
original_length = int(x.shape[dim])
|
494 |
+
|
495 |
+
if original_length >= minimal_length:
|
496 |
+
return x
|
497 |
+
|
498 |
+
if zero_pad:
|
499 |
+
padding_shape = list(x.shape)
|
500 |
+
padding_shape[dim] = minimal_length - original_length
|
501 |
+
padding = torch.zeros(padding_shape, dtype=x.dtype, device=x.device)
|
502 |
+
else:
|
503 |
+
idx = (slice(None),) * dim + (slice(-1, None),) + (slice(None),) * (len(x.shape) - dim - 1)
|
504 |
+
last_element = x[idx]
|
505 |
+
padding = last_element.repeat_interleave(minimal_length - original_length, dim=dim)
|
506 |
+
|
507 |
+
return torch.cat([x, padding], dim=dim)
|
508 |
+
|
509 |
+
|
510 |
+
def lazy_positional_encoding(t, repeats=None):
|
511 |
+
if not isinstance(t, list):
|
512 |
+
t = [t]
|
513 |
+
|
514 |
+
from diffusers.models.embeddings import get_timestep_embedding
|
515 |
+
|
516 |
+
te = torch.tensor(t)
|
517 |
+
te = get_timestep_embedding(timesteps=te, embedding_dim=256, flip_sin_to_cos=True, downscale_freq_shift=0.0, scale=1.0)
|
518 |
+
|
519 |
+
if repeats is None:
|
520 |
+
return te
|
521 |
+
|
522 |
+
te = te[:, None, :].expand(-1, repeats, -1)
|
523 |
+
|
524 |
+
return te
|
525 |
+
|
526 |
+
|
527 |
+
def state_dict_offset_merge(A, B, C=None):
|
528 |
+
result = {}
|
529 |
+
keys = A.keys()
|
530 |
+
|
531 |
+
for key in keys:
|
532 |
+
A_value = A[key]
|
533 |
+
B_value = B[key].to(A_value)
|
534 |
+
|
535 |
+
if C is None:
|
536 |
+
result[key] = A_value + B_value
|
537 |
+
else:
|
538 |
+
C_value = C[key].to(A_value)
|
539 |
+
result[key] = A_value + B_value - C_value
|
540 |
+
|
541 |
+
return result
|
542 |
+
|
543 |
+
|
544 |
+
def state_dict_weighted_merge(state_dicts, weights):
|
545 |
+
if len(state_dicts) != len(weights):
|
546 |
+
raise ValueError("Number of state dictionaries must match number of weights")
|
547 |
+
|
548 |
+
if not state_dicts:
|
549 |
+
return {}
|
550 |
+
|
551 |
+
total_weight = sum(weights)
|
552 |
+
|
553 |
+
if total_weight == 0:
|
554 |
+
raise ValueError("Sum of weights cannot be zero")
|
555 |
+
|
556 |
+
normalized_weights = [w / total_weight for w in weights]
|
557 |
+
|
558 |
+
keys = state_dicts[0].keys()
|
559 |
+
result = {}
|
560 |
+
|
561 |
+
for key in keys:
|
562 |
+
result[key] = state_dicts[0][key] * normalized_weights[0]
|
563 |
+
|
564 |
+
for i in range(1, len(state_dicts)):
|
565 |
+
state_dict_value = state_dicts[i][key].to(result[key])
|
566 |
+
result[key] += state_dict_value * normalized_weights[i]
|
567 |
+
|
568 |
+
return result
|
569 |
+
|
570 |
+
|
571 |
+
def group_files_by_folder(all_files):
|
572 |
+
grouped_files = {}
|
573 |
+
|
574 |
+
for file in all_files:
|
575 |
+
folder_name = os.path.basename(os.path.dirname(file))
|
576 |
+
if folder_name not in grouped_files:
|
577 |
+
grouped_files[folder_name] = []
|
578 |
+
grouped_files[folder_name].append(file)
|
579 |
+
|
580 |
+
list_of_lists = list(grouped_files.values())
|
581 |
+
return list_of_lists
|
582 |
+
|
583 |
+
|
584 |
+
def generate_timestamp():
|
585 |
+
now = datetime.datetime.now()
|
586 |
+
timestamp = now.strftime('%y%m%d_%H%M%S')
|
587 |
+
milliseconds = f"{int(now.microsecond / 1000):03d}"
|
588 |
+
random_number = random.randint(0, 9999)
|
589 |
+
return f"{timestamp}_{milliseconds}_{random_number}"
|
590 |
+
|
591 |
+
|
592 |
+
def write_PIL_image_with_png_info(image, metadata, path):
|
593 |
+
from PIL.PngImagePlugin import PngInfo
|
594 |
+
|
595 |
+
png_info = PngInfo()
|
596 |
+
for key, value in metadata.items():
|
597 |
+
png_info.add_text(key, value)
|
598 |
+
|
599 |
+
image.save(path, "PNG", pnginfo=png_info)
|
600 |
+
return image
|
601 |
+
|
602 |
+
|
603 |
+
def torch_safe_save(content, path):
|
604 |
+
torch.save(content, path + '_tmp')
|
605 |
+
os.replace(path + '_tmp', path)
|
606 |
+
return path
|
607 |
+
|
608 |
+
|
609 |
+
def move_optimizer_to_device(optimizer, device):
|
610 |
+
for state in optimizer.state.values():
|
611 |
+
for k, v in state.items():
|
612 |
+
if isinstance(v, torch.Tensor):
|
613 |
+
state[k] = v.to(device)
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==1.6.0
|
2 |
+
diffusers==0.33.1
|
3 |
+
transformers==4.46.2
|
4 |
+
sentencepiece==0.2.0
|
5 |
+
pillow==11.1.0
|
6 |
+
av==12.1.0
|
7 |
+
numpy==1.26.2
|
8 |
+
scipy==1.12.0
|
9 |
+
requests==2.31.0
|
10 |
+
torchsde==0.2.6
|
11 |
+
|
12 |
+
einops
|
13 |
+
opencv-contrib-python
|
14 |
+
safetensors
|
15 |
+
spaces
|