File size: 17,452 Bytes
a252b0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432b86b
a252b0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
import os
import cv2
import json
import random
import glob
import torch
import einops
import numpy as np
import datetime
import torchvision

import safetensors.torch as sf
from PIL import Image


def min_resize(x, m):
    if x.shape[0] < x.shape[1]:
        s0 = m
        s1 = int(float(m) / float(x.shape[0]) * float(x.shape[1]))
    else:
        s0 = int(float(m) / float(x.shape[1]) * float(x.shape[0]))
        s1 = m
    new_max = max(s1, s0)
    raw_max = max(x.shape[0], x.shape[1])
    if new_max < raw_max:
        interpolation = cv2.INTER_AREA
    else:
        interpolation = cv2.INTER_LANCZOS4
    y = cv2.resize(x, (s1, s0), interpolation=interpolation)
    return y


def d_resize(x, y):
    H, W, C = y.shape
    new_min = min(H, W)
    raw_min = min(x.shape[0], x.shape[1])
    if new_min < raw_min:
        interpolation = cv2.INTER_AREA
    else:
        interpolation = cv2.INTER_LANCZOS4
    y = cv2.resize(x, (W, H), interpolation=interpolation)
    return y


def resize_and_center_crop(image, target_width, target_height):
    if target_height == image.shape[0] and target_width == image.shape[1]:
        return image

    pil_image = Image.fromarray(image)
    original_width, original_height = pil_image.size
    scale_factor = max(target_width / original_width, target_height / original_height)
    resized_width = int(round(original_width * scale_factor))
    resized_height = int(round(original_height * scale_factor))
    resized_image = pil_image.resize((resized_width, resized_height), Image.LANCZOS)
    left = (resized_width - target_width) / 2
    top = (resized_height - target_height) / 2
    right = (resized_width + target_width) / 2
    bottom = (resized_height + target_height) / 2
    cropped_image = resized_image.crop((left, top, right, bottom))
    return np.array(cropped_image)


def resize_and_center_crop_pytorch(image, target_width, target_height):
    B, C, H, W = image.shape

    if H == target_height and W == target_width:
        return image

    scale_factor = max(target_width / W, target_height / H)
    resized_width = int(round(W * scale_factor))
    resized_height = int(round(H * scale_factor))

    resized = torch.nn.functional.interpolate(image, size=(resized_height, resized_width), mode='bilinear', align_corners=False)

    top = (resized_height - target_height) // 2
    left = (resized_width - target_width) // 2
    cropped = resized[:, :, top:top + target_height, left:left + target_width]

    return cropped


def resize_without_crop(image, target_width, target_height):
    if target_height == image.shape[0] and target_width == image.shape[1]:
        return image

    pil_image = Image.fromarray(image)
    resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
    return np.array(resized_image)


def just_crop(image, w, h):
    if h == image.shape[0] and w == image.shape[1]:
        return image

    original_height, original_width = image.shape[:2]
    k = min(original_height / h, original_width / w)
    new_width = int(round(w * k))
    new_height = int(round(h * k))
    x_start = (original_width - new_width) // 2
    y_start = (original_height - new_height) // 2
    cropped_image = image[y_start:y_start + new_height, x_start:x_start + new_width]
    return cropped_image


def write_to_json(data, file_path):
    temp_file_path = file_path + ".tmp"
    with open(temp_file_path, 'wt', encoding='utf-8') as temp_file:
        json.dump(data, temp_file, indent=4)
    os.replace(temp_file_path, file_path)
    return


def read_from_json(file_path):
    with open(file_path, 'rt', encoding='utf-8') as file:
        data = json.load(file)
    return data


def get_active_parameters(m):
    return {k: v for k, v in m.named_parameters() if v.requires_grad}


def cast_training_params(m, dtype=torch.float32):
    result = {}
    for n, param in m.named_parameters():
        if param.requires_grad:
            param.data = param.to(dtype)
            result[n] = param
    return result


def separate_lora_AB(parameters, B_patterns=None):
    parameters_normal = {}
    parameters_B = {}

    if B_patterns is None:
        B_patterns = ['.lora_B.', '__zero__']

    for k, v in parameters.items():
        if any(B_pattern in k for B_pattern in B_patterns):
            parameters_B[k] = v
        else:
            parameters_normal[k] = v

    return parameters_normal, parameters_B


def set_attr_recursive(obj, attr, value):
    attrs = attr.split(".")
    for name in attrs[:-1]:
        obj = getattr(obj, name)
    setattr(obj, attrs[-1], value)
    return


def print_tensor_list_size(tensors):
    total_size = 0
    total_elements = 0

    if isinstance(tensors, dict):
        tensors = tensors.values()

    for tensor in tensors:
        total_size += tensor.nelement() * tensor.element_size()
        total_elements += tensor.nelement()

    total_size_MB = total_size / (1024 ** 2)
    total_elements_B = total_elements / 1e9

    print(f"Total number of tensors: {len(tensors)}")
    print(f"Total size of tensors: {total_size_MB:.2f} MB")
    print(f"Total number of parameters: {total_elements_B:.3f} billion")
    return


@torch.no_grad()
def batch_mixture(a, b=None, probability_a=0.5, mask_a=None):
    batch_size = a.size(0)

    if b is None:
        b = torch.zeros_like(a)

    if mask_a is None:
        mask_a = torch.rand(batch_size) < probability_a

    mask_a = mask_a.to(a.device)
    mask_a = mask_a.reshape((batch_size,) + (1,) * (a.dim() - 1))
    result = torch.where(mask_a, a, b)
    return result


@torch.no_grad()
def zero_module(module):
    for p in module.parameters():
        p.detach().zero_()
    return module


@torch.no_grad()
def supress_lower_channels(m, k, alpha=0.01):
    data = m.weight.data.clone()

    assert int(data.shape[1]) >= k

    data[:, :k] = data[:, :k] * alpha
    m.weight.data = data.contiguous().clone()
    return m


def freeze_module(m):
    if not hasattr(m, '_forward_inside_frozen_module'):
        m._forward_inside_frozen_module = m.forward
    m.requires_grad_(False)
    m.forward = torch.no_grad()(m.forward)
    return m


def get_latest_safetensors(folder_path):
    safetensors_files = glob.glob(os.path.join(folder_path, '*.safetensors'))

    if not safetensors_files:
        raise ValueError('No file to resume!')

    latest_file = max(safetensors_files, key=os.path.getmtime)
    latest_file = os.path.abspath(os.path.realpath(latest_file))
    return latest_file


def generate_random_prompt_from_tags(tags_str, min_length=3, max_length=32):
    tags = tags_str.split(', ')
    tags = random.sample(tags, k=min(random.randint(min_length, max_length), len(tags)))
    prompt = ', '.join(tags)
    return prompt


def interpolate_numbers(a, b, n, round_to_int=False, gamma=1.0):
    numbers = a + (b - a) * (np.linspace(0, 1, n) ** gamma)
    if round_to_int:
        numbers = np.round(numbers).astype(int)
    return numbers.tolist()


def uniform_random_by_intervals(inclusive, exclusive, n, round_to_int=False):
    edges = np.linspace(0, 1, n + 1)
    points = np.random.uniform(edges[:-1], edges[1:])
    numbers = inclusive + (exclusive - inclusive) * points
    if round_to_int:
        numbers = np.round(numbers).astype(int)
    return numbers.tolist()


def soft_append_bcthw(history, current, overlap=0):
    if overlap <= 0:
        return torch.cat([history, current], dim=2)

    assert history.shape[2] >= overlap, f"History length ({history.shape[2]}) must be >= overlap ({overlap})"
    assert current.shape[2] >= overlap, f"Current length ({current.shape[2]}) must be >= overlap ({overlap})"
    
    weights = torch.linspace(1, 0, overlap, dtype=history.dtype, device=history.device).view(1, 1, -1, 1, 1)
    blended = weights * history[:, :, -overlap:] + (1 - weights) * current[:, :, :overlap]
    output = torch.cat([history[:, :, :-overlap], blended, current[:, :, overlap:]], dim=2)

    return output.to(history)


def save_bcthw_as_mp4(x, output_filename, fps=10):
    b, c, t, h, w = x.shape

    per_row = b
    for p in [6, 5, 4, 3, 2]:
        if b % p == 0:
            per_row = p
            break

    os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
    x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
    x = x.detach().cpu().to(torch.uint8)
    x = einops.rearrange(x, '(m n) c t h w -> t (m h) (n w) c', n=per_row)
    torchvision.io.write_video(output_filename, x, fps=fps, video_codec='libx264', options={'crf': '0'})
    return x


def save_bcthw_as_png(x, output_filename):
    os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
    x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
    x = x.detach().cpu().to(torch.uint8)
    x = einops.rearrange(x, 'b c t h w -> c (b h) (t w)')
    torchvision.io.write_png(x, output_filename)
    return output_filename


def save_bchw_as_png(x, output_filename):
    os.makedirs(os.path.dirname(os.path.abspath(os.path.realpath(output_filename))), exist_ok=True)
    x = torch.clamp(x.float(), -1., 1.) * 127.5 + 127.5
    x = x.detach().cpu().to(torch.uint8)
    x = einops.rearrange(x, 'b c h w -> c h (b w)')
    torchvision.io.write_png(x, output_filename)
    return output_filename


def add_tensors_with_padding(tensor1, tensor2):
    if tensor1.shape == tensor2.shape:
        return tensor1 + tensor2

    shape1 = tensor1.shape
    shape2 = tensor2.shape

    new_shape = tuple(max(s1, s2) for s1, s2 in zip(shape1, shape2))

    padded_tensor1 = torch.zeros(new_shape)
    padded_tensor2 = torch.zeros(new_shape)

    padded_tensor1[tuple(slice(0, s) for s in shape1)] = tensor1
    padded_tensor2[tuple(slice(0, s) for s in shape2)] = tensor2

    result = padded_tensor1 + padded_tensor2
    return result


def print_free_mem():
    torch.cuda.empty_cache()
    free_mem, total_mem = torch.cuda.mem_get_info(0)
    free_mem_mb = free_mem / (1024 ** 2)
    total_mem_mb = total_mem / (1024 ** 2)
    print(f"Free memory: {free_mem_mb:.2f} MB")
    print(f"Total memory: {total_mem_mb:.2f} MB")
    return


def print_gpu_parameters(device, state_dict, log_count=1):
    summary = {"device": device, "keys_count": len(state_dict)}

    logged_params = {}
    for i, (key, tensor) in enumerate(state_dict.items()):
        if i >= log_count:
            break
        logged_params[key] = tensor.flatten()[:3].tolist()

    summary["params"] = logged_params

    print(str(summary))
    return


def visualize_txt_as_img(width, height, text, font_path='font/DejaVuSans.ttf', size=18):
    from PIL import Image, ImageDraw, ImageFont

    txt = Image.new("RGB", (width, height), color="white")
    draw = ImageDraw.Draw(txt)
    font = ImageFont.truetype(font_path, size=size)

    if text == '':
        return np.array(txt)

    # Split text into lines that fit within the image width
    lines = []
    words = text.split()
    current_line = words[0]

    for word in words[1:]:
        line_with_word = f"{current_line} {word}"
        if draw.textbbox((0, 0), line_with_word, font=font)[2] <= width:
            current_line = line_with_word
        else:
            lines.append(current_line)
            current_line = word

    lines.append(current_line)

    # Draw the text line by line
    y = 0
    line_height = draw.textbbox((0, 0), "A", font=font)[3]

    for line in lines:
        if y + line_height > height:
            break  # stop drawing if the next line will be outside the image
        draw.text((0, y), line, fill="black", font=font)
        y += line_height

    return np.array(txt)


def blue_mark(x):
    x = x.copy()
    c = x[:, :, 2]
    b = cv2.blur(c, (9, 9))
    x[:, :, 2] = ((c - b) * 16.0 + b).clip(-1, 1)
    return x


def green_mark(x):
    x = x.copy()
    x[:, :, 2] = -1
    x[:, :, 0] = -1
    return x


def frame_mark(x):
    x = x.copy()
    x[:64] = -1
    x[-64:] = -1
    x[:, :8] = 1
    x[:, -8:] = 1
    return x


@torch.inference_mode()
def pytorch2numpy(imgs):
    results = []
    for x in imgs:
        y = x.movedim(0, -1)
        y = y * 127.5 + 127.5
        y = y.detach().float().cpu().numpy().clip(0, 255).astype(np.uint8)
        results.append(y)
    return results


@torch.inference_mode()
def numpy2pytorch(imgs):
    h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 127.5 - 1.0
    h = h.movedim(-1, 1)
    return h


@torch.no_grad()
def duplicate_prefix_to_suffix(x, count, zero_out=False):
    if zero_out:
        return torch.cat([x, torch.zeros_like(x[:count])], dim=0)
    else:
        return torch.cat([x, x[:count]], dim=0)


def weighted_mse(a, b, weight):
    return torch.mean(weight.float() * (a.float() - b.float()) ** 2)


def clamped_linear_interpolation(x, x_min, y_min, x_max, y_max, sigma=1.0):
    x = (x - x_min) / (x_max - x_min)
    x = max(0.0, min(x, 1.0))
    x = x ** sigma
    return y_min + x * (y_max - y_min)


def expand_to_dims(x, target_dims):
    return x.view(*x.shape, *([1] * max(0, target_dims - x.dim())))


def repeat_to_batch_size(tensor: torch.Tensor, batch_size: int):
    if tensor is None:
        return None

    first_dim = tensor.shape[0]

    if first_dim == batch_size:
        return tensor

    if batch_size % first_dim != 0:
        raise ValueError(f"Cannot evenly repeat first dim {first_dim} to match batch_size {batch_size}.")

    repeat_times = batch_size // first_dim

    return tensor.repeat(repeat_times, *[1] * (tensor.dim() - 1))


def dim5(x):
    return expand_to_dims(x, 5)


def dim4(x):
    return expand_to_dims(x, 4)


def dim3(x):
    return expand_to_dims(x, 3)


def crop_or_pad_yield_mask(x, length):
    B, F, C = x.shape
    device = x.device
    dtype = x.dtype

    if F < length:
        y = torch.zeros((B, length, C), dtype=dtype, device=device)
        mask = torch.zeros((B, length), dtype=torch.bool, device=device)
        y[:, :F, :] = x
        mask[:, :F] = True
        return y, mask

    return x[:, :length, :], torch.ones((B, length), dtype=torch.bool, device=device)


def extend_dim(x, dim, minimal_length, zero_pad=False):
    original_length = int(x.shape[dim])

    if original_length >= minimal_length:
        return x

    if zero_pad:
        padding_shape = list(x.shape)
        padding_shape[dim] = minimal_length - original_length
        padding = torch.zeros(padding_shape, dtype=x.dtype, device=x.device)
    else:
        idx = (slice(None),) * dim + (slice(-1, None),) + (slice(None),) * (len(x.shape) - dim - 1)
        last_element = x[idx]
        padding = last_element.repeat_interleave(minimal_length - original_length, dim=dim)

    return torch.cat([x, padding], dim=dim)


def lazy_positional_encoding(t, repeats=None):
    if not isinstance(t, list):
        t = [t]

    from diffusers.models.embeddings import get_timestep_embedding

    te = torch.tensor(t)
    te = get_timestep_embedding(timesteps=te, embedding_dim=256, flip_sin_to_cos=True, downscale_freq_shift=0.0, scale=1.0)

    if repeats is None:
        return te

    te = te[:, None, :].expand(-1, repeats, -1)

    return te


def state_dict_offset_merge(A, B, C=None):
    result = {}
    keys = A.keys()

    for key in keys:
        A_value = A[key]
        B_value = B[key].to(A_value)

        if C is None:
            result[key] = A_value + B_value
        else:
            C_value = C[key].to(A_value)
            result[key] = A_value + B_value - C_value

    return result


def state_dict_weighted_merge(state_dicts, weights):
    if len(state_dicts) != len(weights):
        raise ValueError("Number of state dictionaries must match number of weights")

    if not state_dicts:
        return {}

    total_weight = sum(weights)

    if total_weight == 0:
        raise ValueError("Sum of weights cannot be zero")

    normalized_weights = [w / total_weight for w in weights]

    keys = state_dicts[0].keys()
    result = {}

    for key in keys:
        result[key] = state_dicts[0][key] * normalized_weights[0]

        for i in range(1, len(state_dicts)):
            state_dict_value = state_dicts[i][key].to(result[key])
            result[key] += state_dict_value * normalized_weights[i]

    return result


def group_files_by_folder(all_files):
    grouped_files = {}

    for file in all_files:
        folder_name = os.path.basename(os.path.dirname(file))
        if folder_name not in grouped_files:
            grouped_files[folder_name] = []
        grouped_files[folder_name].append(file)

    list_of_lists = list(grouped_files.values())
    return list_of_lists


def generate_timestamp():
    now = datetime.datetime.now()
    timestamp = now.strftime('%y%m%d_%H%M%S')
    milliseconds = f"{int(now.microsecond / 1000):03d}"
    random_number = random.randint(0, 9999)
    return f"{timestamp}_{milliseconds}_{random_number}"


def write_PIL_image_with_png_info(image, metadata, path):
    from PIL.PngImagePlugin import PngInfo

    png_info = PngInfo()
    for key, value in metadata.items():
        png_info.add_text(key, value)

    image.save(path, "PNG", pnginfo=png_info)
    return image


def torch_safe_save(content, path):
    torch.save(content, path + '_tmp')
    os.replace(path + '_tmp', path)
    return path


def move_optimizer_to_device(optimizer, device):
    for state in optimizer.state.values():
        for k, v in state.items():
            if isinstance(v, torch.Tensor):
                state[k] = v.to(device)