Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
#
|
2 |
|
3 |
import gradio as gr
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
@@ -13,26 +13,15 @@ model_list = [
|
|
13 |
|
14 |
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
tokenizer = None
|
19 |
|
20 |
def load_model(model_name):
|
21 |
"""Charge le modèle et le tokenizer"""
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
#def load_model(model_name):
|
29 |
-
# """Charge le modèle et le tokenizer"""
|
30 |
-
# if model_name is not None:
|
31 |
-
# tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
32 |
-
# model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
33 |
-
# return model, tokenizer
|
34 |
-
# else:
|
35 |
-
# return None, None
|
36 |
|
37 |
def generate_text(model, tokenizer, input_text, max_length, temperature):
|
38 |
"""Génère du texte en utilisant le modèle"""
|
@@ -42,7 +31,7 @@ def generate_text(model, tokenizer, input_text, max_length, temperature):
|
|
42 |
|
43 |
def main(model_name, input_text, max_length, temperature):
|
44 |
"""Fonction principale pour générer le texte"""
|
45 |
-
if model_name is not None:
|
46 |
model, tokenizer = load_model(model_name)
|
47 |
generated_text = generate_text(model, tokenizer, input_text, max_length, temperature)
|
48 |
return generated_text
|
@@ -72,14 +61,14 @@ with demo:
|
|
72 |
|
73 |
load_button.click(
|
74 |
load_model,
|
75 |
-
inputs=
|
76 |
outputs=None,
|
77 |
queue=False
|
78 |
)
|
79 |
|
80 |
submit_button.click(
|
81 |
main,
|
82 |
-
inputs=[
|
83 |
outputs=output_text,
|
84 |
queue=False
|
85 |
)
|
|
|
1 |
+
#V02
|
2 |
|
3 |
import gradio as gr
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
13 |
|
14 |
|
15 |
|
16 |
+
import gradio as gr
|
17 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
18 |
|
19 |
def load_model(model_name):
|
20 |
"""Charge le modèle et le tokenizer"""
|
21 |
+
if model_name is not None and model_name!= "":
|
22 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
24 |
+
return model, tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
def generate_text(model, tokenizer, input_text, max_length, temperature):
|
27 |
"""Génère du texte en utilisant le modèle"""
|
|
|
31 |
|
32 |
def main(model_name, input_text, max_length, temperature):
|
33 |
"""Fonction principale pour générer le texte"""
|
34 |
+
if model_name is not None and model_name!= "":
|
35 |
model, tokenizer = load_model(model_name)
|
36 |
generated_text = generate_text(model, tokenizer, input_text, max_length, temperature)
|
37 |
return generated_text
|
|
|
61 |
|
62 |
load_button.click(
|
63 |
load_model,
|
64 |
+
inputs=model_name,
|
65 |
outputs=None,
|
66 |
queue=False
|
67 |
)
|
68 |
|
69 |
submit_button.click(
|
70 |
main,
|
71 |
+
inputs=[model_name, input_text, max_length_slider, temperature_slider],
|
72 |
outputs=output_text,
|
73 |
queue=False
|
74 |
)
|