xhluca
add human annotation
271f965
import ast
import csv
from textwrap import dedent
import pyparsing as pp
from dataclasses import dataclass
from typing import Any
import json
from pathlib import Path
import logging
import orjson
from PIL import Image
import gradio as gr
import numpy as np
logger = logging.getLogger(__name__)
benchmarks_dict = {
"assistantbench": "AssistantBench",
"visualwebarena": "VisualWebArena",
"webarena": "WebArena",
"workarena": "WorkArena",
}
tasks_dict = {
"assistantbench": "assistantbench.improved.validation",
"visualwebarena": "visualwebarena.resized",
"webarena": "webarena",
"workarena": "workarena.servicenow",
}
agents_dict = {
"GenericAgent-anthropic_claude-3.7-sonnet": "Claude 3.7 Sonnet",
"GenericAgent-gpt-4o-2024-11-20": "GPT-4o",
"GenericAgent-meta-llama_Llama-3.3-70B-Instruct": "Llama-3.3 70B",
"GenericAgent-Qwen_Qwen2.5-VL-72B-Instruct": "Qwen2.5-VL 72B",
}
judges_dict = {
"aer": "AER-C",
"nnetnav": "NNetNav",
"claude-3.7-sonnet-noaxtree": "Claude 3.7 Sonnet (Screen)",
"claude-3.7-sonnet-noscreen": "Claude 3.7 Sonnet (Axtree)",
"gpt-4o-noaxtree": "GPT-4o (Screen)",
"gpt-4o-noscreen": "GPT-4o (Axtree)",
"qwen-2.5-vl-noaxtree": "Qwen 2.5 VL (Screen)",
"qwen-2.5-vl-noscreen": "Qwen 2.5 VL (Axtree)",
"llama-3.3-70b-noscreen": "Llama 3.3 70B",
"functional": "Rule-based",
}
default_judges = [
"AER-C",
"NNetNav",
"Claude 3.7 Sonnet (Screen)",
"GPT-4o (Screen)",
"Qwen 2.5 VL (Screen)",
"Llama 3.3 70B",
]
benchmarks_inverse = {v: k for k, v in benchmarks_dict.items()}
agents_inverse = {v: k for k, v in agents_dict.items()}
tasks_inverse = {v: k for k, v in tasks_dict.items()}
judges_inverse = {v: k for k, v in judges_dict.items()}
@dataclass
class NamedArgument:
"""
Source: https://github.com/ServiceNow/BrowserGym/blob/c3336ef61781ce39166ee6a9551dbfc8fac32ddc/browsergym/core/src/browsergym/core/action/parsers.py#L9
"""
name: str
value: Any
def __repr__(self):
return f"{self.name}={repr(self.value)}"
def overlay_som(
screenshot: np.typing.ArrayLike,
extra_properties: dict,
fontsize: int = 12,
linewidth: int = 2,
tag_margin: int = 2,
):
"""
Source: https://github.com/ServiceNow/BrowserGym/blob/c3336ef61781ce39166ee6a9551dbfc8fac32ddc/browsergym/core/src/browsergym/utils/obs.py#L429
"""
from PIL import Image, ImageDraw, ImageFont
import math
img = Image.fromarray(screenshot).copy() # make a copy
img = img.convert(mode="RGBA")
draw = ImageDraw.Draw(img)
font = ImageFont.load_default(size=fontsize)
# Adapted from https://stackoverflow.com/questions/51908563/dotted-or-dashed-line-with-python-pillow/58885306#58885306
def linedashed(
draw: ImageDraw.Draw,
x0,
y0,
x1,
y1,
fill,
width,
dash_length=4,
nodash_length=8,
):
line_dx = x1 - x0 # delta x (can be negative)
line_dy = y1 - y0 # delta y (can be negative)
line_length = math.hypot(line_dx, line_dy) # line length (positive)
if line_length == 0:
return # Avoid division by zero in case the line length is 0
pixel_dx = line_dx / line_length # x add for 1px line length
pixel_dy = line_dy / line_length # y add for 1px line length
dash_start = 0
while dash_start < line_length:
dash_end = dash_start + dash_length
if dash_end > line_length:
dash_end = line_length
draw.line(
(
round(x0 + pixel_dx * dash_start),
round(y0 + pixel_dy * dash_start),
round(x0 + pixel_dx * dash_end),
round(y0 + pixel_dy * dash_end),
),
fill=fill,
width=width,
)
dash_start += dash_length + nodash_length
for bid, properties in extra_properties.items():
if properties["set_of_marks"] and properties["bbox"]:
x, y, width, height = properties["bbox"]
x0, y0 = x, y
x1, y1 = x + width, y + height
# skip small boxes
area = (x1 - x0) * (y1 - y0)
if area < 20:
logger.warning(
f'som overlay: skipping bid "{bid}" due to bbox too small (area={area})'
)
continue
# draw bounding box with dashed lines
linedashed(draw, x0, y0, x1, y0, fill=(0, 0, 0, 255), width=linewidth)
linedashed(draw, x1, y0, x1, y1, fill=(0, 0, 0, 255), width=linewidth)
linedashed(draw, x1, y1, x0, y1, fill=(0, 0, 0, 255), width=linewidth)
linedashed(draw, x0, y1, x0, y0, fill=(0, 0, 0, 255), width=linewidth)
# get text box size (left, top, right, bottom)
tag_box = font.getbbox(
bid,
)
# set tag size, including margins
tag_size = (
(tag_box[2] - tag_box[0] + 2 * (tag_margin + 1)),
(tag_box[3] - tag_box[1] + 2 * (tag_margin + 1)),
)
# create tag image with correct size and black background
tag_img = Image.new("RGBA", tag_size, "black")
tag_draw = ImageDraw.Draw(tag_img)
# write text with 1px horizontal margin
tag_draw.text(
(-tag_box[0] + tag_margin + 1, -tag_box[1] + tag_margin + 1),
bid,
font=font,
fill=(255, 255, 255, 255),
spacing=0,
)
tag_draw.rectangle(
(0, 0, tag_size[0] - 1, tag_size[1] - 1),
fill=None,
outline=(255, 255, 255, 255),
width=1,
)
# draw tag in the source image, upper left of the bounding box
tag_pos = (x + 0, y - tag_size[1] / 2 + 4)
tag_pos = list(map(round, tag_pos))
img.paste(tag_img, tag_pos)
# convert to RGB (3 channels)
img = img.convert(mode="RGB")
# convert to a numpy array
img = np.array(img)
return img
def apply_overlay_to_image(im, step, highlevel_action_parser=None):
action = step.get("action", None)
if action is None:
return im
# get the element from the action string
element = get_element_from_action_str(
action, highlevel_action_parser=highlevel_action_parser
)
if element is None:
return im
# overlay the extra properties on the image
extra_properties = step.get("extra_element_properties", {})
if element not in extra_properties:
return im
# get the extra properties for the element
extra_properties = {element: extra_properties[element]}
im_arr = np.array(im)
im_overlayed = overlay_som(im_arr, extra_properties=extra_properties)
im = Image.fromarray(im_overlayed)
return im
def _build_highlevel_action_parser() -> pp.ParserElement:
"""
SOURCE: https://github.com/ServiceNow/BrowserGym/blob/c3336ef61781ce39166ee6a9551dbfc8fac32ddc/browsergym/core/src/browsergym/core/action/parsers.py#L17
---------------
Returns:
An action parser that accepts Python-like function calls with string, number, list or dict literals as arguments.
Example:
func("a", 42, None, True, [2, 4, "s"], {"a_key": "a_value"}, )
The parser is loose and accepts multi-line or single-line combinations af calls.
Example:
func() func()
\tfunc()
Python comments are ignored.
Example:
# this is a comment
func() # this function call will be parsed
# func() # this one will not
The parser will return a list of (function_name, function_args) tuples, one for each function call in the input.
The parser will raise exceptions
"""
def make_keyword(kwd_str, kwd_value):
return pp.Keyword(kwd_str).set_parse_action(pp.replace_with(kwd_value))
TRUE = make_keyword("True", True)
FALSE = make_keyword("False", False)
NONE = make_keyword("None", None)
LBRACK, RBRACK, LBRACE, RBRACE, LPAREN, RPAREN, COLON = map(pp.Suppress, "[]{}():")
def literal_eval(toks):
return ast.literal_eval(toks[0])
string = pp.python_quoted_string().set_parse_action(literal_eval)
number = pp.pyparsing_common.number()
dict = pp.Forward().set_name("dict") # will be defined later
list = pp.Forward().set_name("list") # will be defined later
_tuple = pp.Forward().set_name("tuple") # will be defined later
element = (string | number | dict | list | _tuple | TRUE | FALSE | NONE).set_name(
"element"
)
list_items = pp.DelimitedList(element, allow_trailing_delim=True).set_name(None)
list << pp.Group(LBRACK + pp.Optional(list_items) + RBRACK, aslist=True)
_tuple << pp.Group(
LPAREN + pp.Optional(list_items) + RPAREN, aslist=True
).set_parse_action(lambda tokens: tuple(tokens[0]))
dict_item = pp.Group(string + COLON + element, aslist=True).set_name("dict item")
dict_items = pp.DelimitedList(dict_item, allow_trailing_delim=True).set_name(None)
dict << pp.Dict(LBRACE + pp.Optional(dict_items) + RBRACE, asdict=True)
arg = element
list_args = pp.DelimitedList(arg, allow_trailing_delim=True).set_name(None)
named_arg = (
pp.pyparsing_common.identifier() + pp.Literal("=") + element
).set_parse_action(lambda tokens: NamedArgument(name=tokens[0], value=tokens[2]))
list_named_args = pp.DelimitedList(named_arg, allow_trailing_delim=True).set_name(
None
)
function_call = pp.pyparsing_common.identifier() + pp.Group(
LPAREN + pp.Optional(list_args) + pp.Optional(list_named_args) + RPAREN,
aslist=True,
)
multiple_function_calls = pp.DelimitedList(pp.Group(function_call), delim="")
multiple_function_calls.ignore(pp.python_style_comment())
parser = multiple_function_calls
return parser
def replace_string_content(s, start="https://", end=".png", replacement="<URL>"):
# erase everything between start and end
# example: https://www.example.com/image.png
# becomes: replaced
# find the start and end indices
start_index = s.find(start)
end_index = s.find(end, start_index) + len(end)
if start_index == -1 or end_index == -1:
return s
# replace the content
return s[:start_index] + replacement + s[end_index:]
def infer_task_name(base_traj_dir, benchmark, agent):
agent_full = agents_inverse[agent]
benchmark_full = benchmarks_inverse[benchmark]
traj_dir = Path(
base_traj_dir,
benchmark_full,
agent_full,
f"{agent_full}_on_{benchmark_full}",
)
traj_dir = traj_dir.resolve()
if not traj_dir.exists():
raise FileNotFoundError(f"Trajectory directory not found: {traj_dir}")
# get one json file in the directory
json_files = list(traj_dir.glob("*.json"))
if not json_files:
raise FileNotFoundError(f"No JSON files found in: {traj_dir}")
# get the first json file
json_file = json_files[0]
# task_name is the part of the filename before the last dot
task_name = json_file.stem.split(".")[:-1]
# join the task name with the benchmark name
task_name = ".".join(task_name)
return task_name
def get_element_from_action_str(action_str, highlevel_action_parser=None):
import pyparsing
if highlevel_action_parser is not None:
highlevel_action_parser = _build_highlevel_action_parser()
try:
function_calls = highlevel_action_parser.parse_string(
action_str, parse_all=True
)
action_function, action_args = function_calls[0]
except pyparsing.exceptions.ParseException:
action_function = "UNKNOWN"
action_args = []
if len(action_args) > 0:
# first argument is the element
element = action_args[0]
else:
element = None
return element
def get_trajectory_path(base_traj_dir, benchmark, agent, task_id):
agent_full = agents_inverse[agent]
benchmark_full = benchmarks_inverse[benchmark]
task_full = tasks_dict[benchmark_full]
traj_path = Path(
base_traj_dir,
benchmark_full,
agent_full,
f"{agent_full}_on_{task_full}",
f"{task_full}.{task_id}.json",
)
traj_path = traj_path.resolve()
if not traj_path.exists():
raise FileNotFoundError(f"Trajectory file not found: {traj_path}")
return traj_path
def get_judgment_path(base_judgments_dir, benchmark, agent, judge, task_id):
agent_full = agents_inverse[agent]
benchmark_full = benchmarks_inverse[benchmark]
task_full = tasks_dict[benchmark_full]
judge_full = judges_inverse[judge]
judgment_path = Path(
base_judgments_dir,
benchmark_full,
agent_full,
judge_full,
f"{task_full}.{task_id}.json",
)
judgment_path = judgment_path.resolve()
if not judgment_path.exists():
raise FileNotFoundError(f"Judgment file not found: {judgment_path}")
return judgment_path
def list_benchmarks(base_traj_dir):
benchmarks_all = list(benchmarks_dict.values())
# filter by the benchmarks that are in the base_traj_dir
benchmarks = []
for benchmark in benchmarks_all:
traj_dir = Path(base_traj_dir, benchmarks_inverse[benchmark])
traj_dir = traj_dir.resolve()
if traj_dir.exists():
benchmarks.append(benchmark)
# sort the benchmarks
benchmarks.sort()
return benchmarks
def list_agents(base_traj_dir, benchmark):
# show only the agents that are in the base_traj_dir
benchmark_full = benchmarks_inverse[benchmark]
traj_dir = Path(base_traj_dir, benchmark_full)
traj_dir = traj_dir.resolve()
if not traj_dir.exists():
raise FileNotFoundError(f"Trajectory directory not found: {traj_dir}")
# list all dirs that are not hidden
subdirs = [
f for f in traj_dir.iterdir() if f.is_dir() and not f.name.startswith(".")
]
agent_names = [agents_dict[s.name] for s in subdirs if s.name in agents_dict]
# sort the agent names
agent_names.sort()
return agent_names
def list_task_ids(base_traj_dir, benchmark, agent):
# example: trajectories/cleaned/workarena/GenericAgent-anthropic_claude-3.7-sonnet/GenericAgent-anthropic_claude-3.7-sonnet_on_workarena.servicenow
agent_full = agents_inverse[agent]
benchmark_full = benchmarks_inverse[benchmark]
task_full = tasks_dict[benchmark_full]
traj_dir = Path(
base_traj_dir,
benchmark_full,
agent_full,
f"{agent_full}_on_{task_full}",
)
traj_dir = traj_dir.resolve()
if not traj_dir.exists():
raise FileNotFoundError(f"Trajectory directory not found: {traj_dir}")
task_ids = [f.stem.split(".")[-1] for f in traj_dir.glob("*.json")]
# sort as integer if possible, otherwise as string
task_ids.sort(key=lambda x: int(x) if x.isdigit() else x)
return task_ids
def get_message_from_judgment(judgment):
try:
output = judgment['response']['choices'][0]['message']['content']
except:
output = "No judgment found"
return output
def get_message_from_rule_based(judgment):
try:
r = judgment['trajectory_info']['summary_info']['cum_reward']
output = "Success" if r > 0.5 else "Failure"
except:
output = "No judgment found"
return output
def records_to_dict(records, key_order: list = ['benchmark', 'model_name', 'task_id']):
"""
Convert a list of records to a nested dict, with key order
The depth of the dict is determined by the number of keys in key_order.
"""
result = {}
for record in records:
# get the keys in the order of key_order
keys = [record[key] for key in key_order]
# create a nested dict
d = result
for key in keys[:-1]:
if key not in d:
d[key] = {}
d = d[key]
# set the value
d[keys[-1]] = record
return result
def format_annotation(annotation):
annotation_str = dedent(f"""
Success: {annotation['trajectory_success']}
Side Effect: {annotation['trajectory_side_effect']}
Looping: {annotation['trajectory_looping']}
""")
return annotation_str.strip()
base_traj_dir = "trajectories/cleaned"
base_screenshot_dir = "trajectories/screenshots"
base_judgments_dir = "trajectories/judgments"
annotations_path = "./annotations.csv"
base_traj_dir = Path(base_traj_dir)
base_screenshot_dir = Path(base_screenshot_dir)
hl_action_parser = _build_highlevel_action_parser()
# load annotations as records via csv
with open(annotations_path, "r") as f:
annotations = list(csv.DictReader(f))
annotations_dict = records_to_dict(annotations, key_order=['benchmark', 'model_name', 'task_id'])
# convert the annotations to a dict, with key order
with gr.Blocks(title="AgentRewardBench Demo") as demo:
gr.Markdown(
"""
# AgentRewardBench Demo ([paper](https://arxiv.org/abs/2504.08942))
"""
)
with gr.Row():
with gr.Column(scale=4):
benchmark_default = "WebArena"
benchmark_dd = gr.Dropdown(
label="Benchmark", choices=list_benchmarks(base_traj_dir), value=benchmark_default
)
agents = list_agents(base_traj_dir, benchmark_default)
model_dd = gr.Dropdown(label="Agent", choices=agents, value=agents[0])
task_ids = list_task_ids(base_traj_dir, benchmark_default, agents[0])
task_id_dd = gr.Dropdown(label="Task ID", choices=task_ids, value=task_ids[0])
@benchmark_dd.change(inputs=[benchmark_dd], outputs=[model_dd])
def update_agents(benchmark):
agents = list_agents(base_traj_dir, benchmark)
return gr.Dropdown(label="Agent", choices=agents, value=agents[0])
@model_dd.change(inputs=[benchmark_dd, model_dd], outputs=[task_id_dd])
def update_task_ids(benchmark, agent):
task_ids = list_task_ids(base_traj_dir, benchmark, agent)
return gr.Dropdown(choices=task_ids, value=task_ids[0])
with gr.Column(scale=8):
@gr.render(inputs=[benchmark_dd, model_dd, task_id_dd])
def render_trajectory(benchmark, agent, task_id):
traj_path = get_trajectory_path(base_traj_dir, benchmark, agent, task_id)
with open(traj_path, "rb") as f:
traj = orjson.loads(f.read())
goal = replace_string_content(traj["goal"])
gr.Textbox(label="Goal", value=goal, visible=True)
for step in traj["steps"]:
num = step["num"]
action = step["action"]
reasoning = step["reasoning"]
screenshot_path = step["screenshot_path"]
gr.Markdown(f"# Step {num}")
with gr.Group():
im = Image.open(screenshot_path)
im = apply_overlay_to_image(
im, step, highlevel_action_parser=hl_action_parser
)
format_ = "webp" if im.format is None else im.format
gr.Image(im, label="Screenshot", format=format_)
if reasoning is not None:
gr.Textbox(reasoning, label="Reasoning", lines=4)
if action is not None:
gr.Textbox(action, label="Action", lines=2)
# multi-choices dropdown for judges
judge_dd = gr.Dropdown(
label="Judges",
choices=list(judges_dict.values()),
multiselect=True,
value=default_judges,
)
# get annotation for the task from annotations_dict
@gr.render(inputs=[benchmark_dd, model_dd, task_id_dd])
def render_annotation(benchmark, agent, task_id):
bench_full = benchmarks_inverse[benchmark]
agent_full = agents_inverse[agent]
task_full = tasks_dict[bench_full]
task_id_full = f"{task_full}.{task_id}"
# get the annotation
annotation = annotations_dict[bench_full][agent_full][task_id_full]
annotation_str = format_annotation(annotation)
gr.Textbox(label="Expert Annotation", value=annotation_str, lines=3)
@gr.render(inputs=[benchmark_dd, model_dd, task_id_dd, judge_dd])
def render_judge(benchmark, agent, task_id, judge_choices):
# load judgments
for judge in judges_dict.values():
if judge not in judge_choices:
continue
judgment_path = get_judgment_path(
base_judgments_dir, benchmark, agent, judge, task_id
)
if not judgment_path.exists():
continue
with open(judgment_path, "rb") as f:
judgment = orjson.loads(f.read())
if judge == "Rule-based":
msg = get_message_from_rule_based(judgment)
else:
msg = get_message_from_judgment(judgment)
gr.Textbox(label=judge, value=msg, lines=4)
demo.launch()