File size: 21,761 Bytes
51c2a5b 271f965 51c2a5b b915816 51c2a5b 271f965 51c2a5b 271f965 51c2a5b 271f965 99e2870 1b1be3e 28a9c15 1b1be3e 99e2870 51c2a5b 99e2870 51c2a5b 271f965 99e2870 51c2a5b 99e2870 51c2a5b 99e2870 51c2a5b 99e2870 51c2a5b 99e2870 51c2a5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 |
import ast
import csv
from textwrap import dedent
import pyparsing as pp
from dataclasses import dataclass
from typing import Any
import json
from pathlib import Path
import logging
import orjson
from PIL import Image
import gradio as gr
import numpy as np
logger = logging.getLogger(__name__)
benchmarks_dict = {
"assistantbench": "AssistantBench",
"visualwebarena": "VisualWebArena",
"webarena": "WebArena",
"workarena": "WorkArena",
}
tasks_dict = {
"assistantbench": "assistantbench.improved.validation",
"visualwebarena": "visualwebarena.resized",
"webarena": "webarena",
"workarena": "workarena.servicenow",
}
agents_dict = {
"GenericAgent-anthropic_claude-3.7-sonnet": "Claude 3.7 Sonnet",
"GenericAgent-gpt-4o-2024-11-20": "GPT-4o",
"GenericAgent-meta-llama_Llama-3.3-70B-Instruct": "Llama-3.3 70B",
"GenericAgent-Qwen_Qwen2.5-VL-72B-Instruct": "Qwen2.5-VL 72B",
}
judges_dict = {
"aer": "AER-C",
"nnetnav": "NNetNav",
"claude-3.7-sonnet-noaxtree": "Claude 3.7 Sonnet (Screen)",
"claude-3.7-sonnet-noscreen": "Claude 3.7 Sonnet (Axtree)",
"gpt-4o-noaxtree": "GPT-4o (Screen)",
"gpt-4o-noscreen": "GPT-4o (Axtree)",
"qwen-2.5-vl-noaxtree": "Qwen 2.5 VL (Screen)",
"qwen-2.5-vl-noscreen": "Qwen 2.5 VL (Axtree)",
"llama-3.3-70b-noscreen": "Llama 3.3 70B",
"functional": "Rule-based",
}
default_judges = [
"AER-C",
"NNetNav",
"Claude 3.7 Sonnet (Screen)",
"GPT-4o (Screen)",
"Qwen 2.5 VL (Screen)",
"Llama 3.3 70B",
]
benchmarks_inverse = {v: k for k, v in benchmarks_dict.items()}
agents_inverse = {v: k for k, v in agents_dict.items()}
tasks_inverse = {v: k for k, v in tasks_dict.items()}
judges_inverse = {v: k for k, v in judges_dict.items()}
@dataclass
class NamedArgument:
"""
Source: https://github.com/ServiceNow/BrowserGym/blob/c3336ef61781ce39166ee6a9551dbfc8fac32ddc/browsergym/core/src/browsergym/core/action/parsers.py#L9
"""
name: str
value: Any
def __repr__(self):
return f"{self.name}={repr(self.value)}"
def overlay_som(
screenshot: np.typing.ArrayLike,
extra_properties: dict,
fontsize: int = 12,
linewidth: int = 2,
tag_margin: int = 2,
):
"""
Source: https://github.com/ServiceNow/BrowserGym/blob/c3336ef61781ce39166ee6a9551dbfc8fac32ddc/browsergym/core/src/browsergym/utils/obs.py#L429
"""
from PIL import Image, ImageDraw, ImageFont
import math
img = Image.fromarray(screenshot).copy() # make a copy
img = img.convert(mode="RGBA")
draw = ImageDraw.Draw(img)
font = ImageFont.load_default(size=fontsize)
# Adapted from https://stackoverflow.com/questions/51908563/dotted-or-dashed-line-with-python-pillow/58885306#58885306
def linedashed(
draw: ImageDraw.Draw,
x0,
y0,
x1,
y1,
fill,
width,
dash_length=4,
nodash_length=8,
):
line_dx = x1 - x0 # delta x (can be negative)
line_dy = y1 - y0 # delta y (can be negative)
line_length = math.hypot(line_dx, line_dy) # line length (positive)
if line_length == 0:
return # Avoid division by zero in case the line length is 0
pixel_dx = line_dx / line_length # x add for 1px line length
pixel_dy = line_dy / line_length # y add for 1px line length
dash_start = 0
while dash_start < line_length:
dash_end = dash_start + dash_length
if dash_end > line_length:
dash_end = line_length
draw.line(
(
round(x0 + pixel_dx * dash_start),
round(y0 + pixel_dy * dash_start),
round(x0 + pixel_dx * dash_end),
round(y0 + pixel_dy * dash_end),
),
fill=fill,
width=width,
)
dash_start += dash_length + nodash_length
for bid, properties in extra_properties.items():
if properties["set_of_marks"] and properties["bbox"]:
x, y, width, height = properties["bbox"]
x0, y0 = x, y
x1, y1 = x + width, y + height
# skip small boxes
area = (x1 - x0) * (y1 - y0)
if area < 20:
logger.warning(
f'som overlay: skipping bid "{bid}" due to bbox too small (area={area})'
)
continue
# draw bounding box with dashed lines
linedashed(draw, x0, y0, x1, y0, fill=(0, 0, 0, 255), width=linewidth)
linedashed(draw, x1, y0, x1, y1, fill=(0, 0, 0, 255), width=linewidth)
linedashed(draw, x1, y1, x0, y1, fill=(0, 0, 0, 255), width=linewidth)
linedashed(draw, x0, y1, x0, y0, fill=(0, 0, 0, 255), width=linewidth)
# get text box size (left, top, right, bottom)
tag_box = font.getbbox(
bid,
)
# set tag size, including margins
tag_size = (
(tag_box[2] - tag_box[0] + 2 * (tag_margin + 1)),
(tag_box[3] - tag_box[1] + 2 * (tag_margin + 1)),
)
# create tag image with correct size and black background
tag_img = Image.new("RGBA", tag_size, "black")
tag_draw = ImageDraw.Draw(tag_img)
# write text with 1px horizontal margin
tag_draw.text(
(-tag_box[0] + tag_margin + 1, -tag_box[1] + tag_margin + 1),
bid,
font=font,
fill=(255, 255, 255, 255),
spacing=0,
)
tag_draw.rectangle(
(0, 0, tag_size[0] - 1, tag_size[1] - 1),
fill=None,
outline=(255, 255, 255, 255),
width=1,
)
# draw tag in the source image, upper left of the bounding box
tag_pos = (x + 0, y - tag_size[1] / 2 + 4)
tag_pos = list(map(round, tag_pos))
img.paste(tag_img, tag_pos)
# convert to RGB (3 channels)
img = img.convert(mode="RGB")
# convert to a numpy array
img = np.array(img)
return img
def apply_overlay_to_image(im, step, highlevel_action_parser=None):
action = step.get("action", None)
if action is None:
return im
# get the element from the action string
element = get_element_from_action_str(
action, highlevel_action_parser=highlevel_action_parser
)
if element is None:
return im
# overlay the extra properties on the image
extra_properties = step.get("extra_element_properties", {})
if element not in extra_properties:
return im
# get the extra properties for the element
extra_properties = {element: extra_properties[element]}
im_arr = np.array(im)
im_overlayed = overlay_som(im_arr, extra_properties=extra_properties)
im = Image.fromarray(im_overlayed)
return im
def _build_highlevel_action_parser() -> pp.ParserElement:
"""
SOURCE: https://github.com/ServiceNow/BrowserGym/blob/c3336ef61781ce39166ee6a9551dbfc8fac32ddc/browsergym/core/src/browsergym/core/action/parsers.py#L17
---------------
Returns:
An action parser that accepts Python-like function calls with string, number, list or dict literals as arguments.
Example:
func("a", 42, None, True, [2, 4, "s"], {"a_key": "a_value"}, )
The parser is loose and accepts multi-line or single-line combinations af calls.
Example:
func() func()
\tfunc()
Python comments are ignored.
Example:
# this is a comment
func() # this function call will be parsed
# func() # this one will not
The parser will return a list of (function_name, function_args) tuples, one for each function call in the input.
The parser will raise exceptions
"""
def make_keyword(kwd_str, kwd_value):
return pp.Keyword(kwd_str).set_parse_action(pp.replace_with(kwd_value))
TRUE = make_keyword("True", True)
FALSE = make_keyword("False", False)
NONE = make_keyword("None", None)
LBRACK, RBRACK, LBRACE, RBRACE, LPAREN, RPAREN, COLON = map(pp.Suppress, "[]{}():")
def literal_eval(toks):
return ast.literal_eval(toks[0])
string = pp.python_quoted_string().set_parse_action(literal_eval)
number = pp.pyparsing_common.number()
dict = pp.Forward().set_name("dict") # will be defined later
list = pp.Forward().set_name("list") # will be defined later
_tuple = pp.Forward().set_name("tuple") # will be defined later
element = (string | number | dict | list | _tuple | TRUE | FALSE | NONE).set_name(
"element"
)
list_items = pp.DelimitedList(element, allow_trailing_delim=True).set_name(None)
list << pp.Group(LBRACK + pp.Optional(list_items) + RBRACK, aslist=True)
_tuple << pp.Group(
LPAREN + pp.Optional(list_items) + RPAREN, aslist=True
).set_parse_action(lambda tokens: tuple(tokens[0]))
dict_item = pp.Group(string + COLON + element, aslist=True).set_name("dict item")
dict_items = pp.DelimitedList(dict_item, allow_trailing_delim=True).set_name(None)
dict << pp.Dict(LBRACE + pp.Optional(dict_items) + RBRACE, asdict=True)
arg = element
list_args = pp.DelimitedList(arg, allow_trailing_delim=True).set_name(None)
named_arg = (
pp.pyparsing_common.identifier() + pp.Literal("=") + element
).set_parse_action(lambda tokens: NamedArgument(name=tokens[0], value=tokens[2]))
list_named_args = pp.DelimitedList(named_arg, allow_trailing_delim=True).set_name(
None
)
function_call = pp.pyparsing_common.identifier() + pp.Group(
LPAREN + pp.Optional(list_args) + pp.Optional(list_named_args) + RPAREN,
aslist=True,
)
multiple_function_calls = pp.DelimitedList(pp.Group(function_call), delim="")
multiple_function_calls.ignore(pp.python_style_comment())
parser = multiple_function_calls
return parser
def replace_string_content(s, start="https://", end=".png", replacement="<URL>"):
# erase everything between start and end
# example: https://www.example.com/image.png
# becomes: replaced
# find the start and end indices
start_index = s.find(start)
end_index = s.find(end, start_index) + len(end)
if start_index == -1 or end_index == -1:
return s
# replace the content
return s[:start_index] + replacement + s[end_index:]
def infer_task_name(base_traj_dir, benchmark, agent):
agent_full = agents_inverse[agent]
benchmark_full = benchmarks_inverse[benchmark]
traj_dir = Path(
base_traj_dir,
benchmark_full,
agent_full,
f"{agent_full}_on_{benchmark_full}",
)
traj_dir = traj_dir.resolve()
if not traj_dir.exists():
raise FileNotFoundError(f"Trajectory directory not found: {traj_dir}")
# get one json file in the directory
json_files = list(traj_dir.glob("*.json"))
if not json_files:
raise FileNotFoundError(f"No JSON files found in: {traj_dir}")
# get the first json file
json_file = json_files[0]
# task_name is the part of the filename before the last dot
task_name = json_file.stem.split(".")[:-1]
# join the task name with the benchmark name
task_name = ".".join(task_name)
return task_name
def get_element_from_action_str(action_str, highlevel_action_parser=None):
import pyparsing
if highlevel_action_parser is not None:
highlevel_action_parser = _build_highlevel_action_parser()
try:
function_calls = highlevel_action_parser.parse_string(
action_str, parse_all=True
)
action_function, action_args = function_calls[0]
except pyparsing.exceptions.ParseException:
action_function = "UNKNOWN"
action_args = []
if len(action_args) > 0:
# first argument is the element
element = action_args[0]
else:
element = None
return element
def get_trajectory_path(base_traj_dir, benchmark, agent, task_id):
agent_full = agents_inverse[agent]
benchmark_full = benchmarks_inverse[benchmark]
task_full = tasks_dict[benchmark_full]
traj_path = Path(
base_traj_dir,
benchmark_full,
agent_full,
f"{agent_full}_on_{task_full}",
f"{task_full}.{task_id}.json",
)
traj_path = traj_path.resolve()
if not traj_path.exists():
raise FileNotFoundError(f"Trajectory file not found: {traj_path}")
return traj_path
def get_judgment_path(base_judgments_dir, benchmark, agent, judge, task_id):
agent_full = agents_inverse[agent]
benchmark_full = benchmarks_inverse[benchmark]
task_full = tasks_dict[benchmark_full]
judge_full = judges_inverse[judge]
judgment_path = Path(
base_judgments_dir,
benchmark_full,
agent_full,
judge_full,
f"{task_full}.{task_id}.json",
)
judgment_path = judgment_path.resolve()
if not judgment_path.exists():
raise FileNotFoundError(f"Judgment file not found: {judgment_path}")
return judgment_path
def list_benchmarks(base_traj_dir):
benchmarks_all = list(benchmarks_dict.values())
# filter by the benchmarks that are in the base_traj_dir
benchmarks = []
for benchmark in benchmarks_all:
traj_dir = Path(base_traj_dir, benchmarks_inverse[benchmark])
traj_dir = traj_dir.resolve()
if traj_dir.exists():
benchmarks.append(benchmark)
# sort the benchmarks
benchmarks.sort()
return benchmarks
def list_agents(base_traj_dir, benchmark):
# show only the agents that are in the base_traj_dir
benchmark_full = benchmarks_inverse[benchmark]
traj_dir = Path(base_traj_dir, benchmark_full)
traj_dir = traj_dir.resolve()
if not traj_dir.exists():
raise FileNotFoundError(f"Trajectory directory not found: {traj_dir}")
# list all dirs that are not hidden
subdirs = [
f for f in traj_dir.iterdir() if f.is_dir() and not f.name.startswith(".")
]
agent_names = [agents_dict[s.name] for s in subdirs if s.name in agents_dict]
# sort the agent names
agent_names.sort()
return agent_names
def list_task_ids(base_traj_dir, benchmark, agent):
# example: trajectories/cleaned/workarena/GenericAgent-anthropic_claude-3.7-sonnet/GenericAgent-anthropic_claude-3.7-sonnet_on_workarena.servicenow
agent_full = agents_inverse[agent]
benchmark_full = benchmarks_inverse[benchmark]
task_full = tasks_dict[benchmark_full]
traj_dir = Path(
base_traj_dir,
benchmark_full,
agent_full,
f"{agent_full}_on_{task_full}",
)
traj_dir = traj_dir.resolve()
if not traj_dir.exists():
raise FileNotFoundError(f"Trajectory directory not found: {traj_dir}")
task_ids = [f.stem.split(".")[-1] for f in traj_dir.glob("*.json")]
# sort as integer if possible, otherwise as string
task_ids.sort(key=lambda x: int(x) if x.isdigit() else x)
return task_ids
def get_message_from_judgment(judgment):
try:
output = judgment['response']['choices'][0]['message']['content']
except:
output = "No judgment found"
return output
def get_message_from_rule_based(judgment):
try:
r = judgment['trajectory_info']['summary_info']['cum_reward']
output = "Success" if r > 0.5 else "Failure"
except:
output = "No judgment found"
return output
def records_to_dict(records, key_order: list = ['benchmark', 'model_name', 'task_id']):
"""
Convert a list of records to a nested dict, with key order
The depth of the dict is determined by the number of keys in key_order.
"""
result = {}
for record in records:
# get the keys in the order of key_order
keys = [record[key] for key in key_order]
# create a nested dict
d = result
for key in keys[:-1]:
if key not in d:
d[key] = {}
d = d[key]
# set the value
d[keys[-1]] = record
return result
def format_annotation(annotation):
annotation_str = dedent(f"""
Success: {annotation['trajectory_success']}
Side Effect: {annotation['trajectory_side_effect']}
Looping: {annotation['trajectory_looping']}
""")
return annotation_str.strip()
base_traj_dir = "trajectories/cleaned"
base_screenshot_dir = "trajectories/screenshots"
base_judgments_dir = "trajectories/judgments"
annotations_path = "./annotations.csv"
base_traj_dir = Path(base_traj_dir)
base_screenshot_dir = Path(base_screenshot_dir)
hl_action_parser = _build_highlevel_action_parser()
# load annotations as records via csv
with open(annotations_path, "r") as f:
annotations = list(csv.DictReader(f))
annotations_dict = records_to_dict(annotations, key_order=['benchmark', 'model_name', 'task_id'])
# convert the annotations to a dict, with key order
with gr.Blocks(title="AgentRewardBench Demo") as demo:
gr.Markdown(
"""
# AgentRewardBench Demo ([paper](https://arxiv.org/abs/2504.08942))
"""
)
with gr.Row():
with gr.Column(scale=4):
benchmark_default = "WebArena"
benchmark_dd = gr.Dropdown(
label="Benchmark", choices=list_benchmarks(base_traj_dir), value=benchmark_default
)
agents = list_agents(base_traj_dir, benchmark_default)
model_dd = gr.Dropdown(label="Agent", choices=agents, value=agents[0])
task_ids = list_task_ids(base_traj_dir, benchmark_default, agents[0])
task_id_dd = gr.Dropdown(label="Task ID", choices=task_ids, value=task_ids[0])
@benchmark_dd.change(inputs=[benchmark_dd], outputs=[model_dd])
def update_agents(benchmark):
agents = list_agents(base_traj_dir, benchmark)
return gr.Dropdown(label="Agent", choices=agents, value=agents[0])
@model_dd.change(inputs=[benchmark_dd, model_dd], outputs=[task_id_dd])
def update_task_ids(benchmark, agent):
task_ids = list_task_ids(base_traj_dir, benchmark, agent)
return gr.Dropdown(choices=task_ids, value=task_ids[0])
with gr.Column(scale=8):
@gr.render(inputs=[benchmark_dd, model_dd, task_id_dd])
def render_trajectory(benchmark, agent, task_id):
traj_path = get_trajectory_path(base_traj_dir, benchmark, agent, task_id)
with open(traj_path, "rb") as f:
traj = orjson.loads(f.read())
goal = replace_string_content(traj["goal"])
gr.Textbox(label="Goal", value=goal, visible=True)
for step in traj["steps"]:
num = step["num"]
action = step["action"]
reasoning = step["reasoning"]
screenshot_path = step["screenshot_path"]
gr.Markdown(f"# Step {num}")
with gr.Group():
im = Image.open(screenshot_path)
im = apply_overlay_to_image(
im, step, highlevel_action_parser=hl_action_parser
)
format_ = "webp" if im.format is None else im.format
gr.Image(im, label="Screenshot", format=format_)
if reasoning is not None:
gr.Textbox(reasoning, label="Reasoning", lines=4)
if action is not None:
gr.Textbox(action, label="Action", lines=2)
# multi-choices dropdown for judges
judge_dd = gr.Dropdown(
label="Judges",
choices=list(judges_dict.values()),
multiselect=True,
value=default_judges,
)
# get annotation for the task from annotations_dict
@gr.render(inputs=[benchmark_dd, model_dd, task_id_dd])
def render_annotation(benchmark, agent, task_id):
bench_full = benchmarks_inverse[benchmark]
agent_full = agents_inverse[agent]
task_full = tasks_dict[bench_full]
task_id_full = f"{task_full}.{task_id}"
# get the annotation
annotation = annotations_dict[bench_full][agent_full][task_id_full]
annotation_str = format_annotation(annotation)
gr.Textbox(label="Expert Annotation", value=annotation_str, lines=3)
@gr.render(inputs=[benchmark_dd, model_dd, task_id_dd, judge_dd])
def render_judge(benchmark, agent, task_id, judge_choices):
# load judgments
for judge in judges_dict.values():
if judge not in judge_choices:
continue
judgment_path = get_judgment_path(
base_judgments_dir, benchmark, agent, judge, task_id
)
if not judgment_path.exists():
continue
with open(judgment_path, "rb") as f:
judgment = orjson.loads(f.read())
if judge == "Rule-based":
msg = get_message_from_rule_based(judgment)
else:
msg = get_message_from_judgment(judgment)
gr.Textbox(label=judge, value=msg, lines=4)
demo.launch()
|