Mattral's picture
Update app.py
0ce7e6e verified
raw
history blame
12.1 kB
import streamlit as st
import numpy as np
import cv2
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import plotly.express as px
# Dummy CNN Model
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
self.fc1 = nn.Linear(32 * 8 * 8, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x1 = F.relu(self.conv1(x)) # First conv layer activation
x2 = F.relu(self.conv2(x1))
x3 = F.adaptive_avg_pool2d(x2, (8, 8))
x4 = x3.view(x3.size(0), -1)
x5 = F.relu(self.fc1(x4))
x6 = self.fc2(x5)
return x6, x1 # Return both output and first layer activations
# FFT processing functions
def apply_fft(image):
fft_channels = []
for channel in cv2.split(image):
fft = np.fft.fft2(channel)
fft_shifted = np.fft.fftshift(fft)
fft_channels.append(fft_shifted)
return fft_channels
def filter_fft_percentage(fft_channels, percentage):
filtered_fft = []
for fft_data in fft_channels:
magnitude = np.abs(fft_data)
sorted_mag = np.sort(magnitude.flatten())[::-1]
num_keep = int(len(sorted_mag) * percentage / 100)
threshold = sorted_mag[num_keep - 1] if num_keep > 0 else 0
mask = magnitude >= threshold
filtered_fft.append(fft_data * mask)
return filtered_fft
def inverse_fft(filtered_fft):
reconstructed_channels = []
for fft_data in filtered_fft:
fft_ishift = np.fft.ifftshift(fft_data)
img_reconstructed = np.fft.ifft2(fft_ishift).real
img_normalized = cv2.normalize(img_reconstructed, None, 0, 255, cv2.NORM_MINMAX)
reconstructed_channels.append(img_normalized.astype(np.uint8))
return cv2.merge(reconstructed_channels)
# CNN Pass Visualization
def pass_to_cnn(fft_image):
model = SimpleCNN()
magnitude_tensor = torch.tensor(np.abs(fft_image), dtype=torch.float32).unsqueeze(0).unsqueeze(0)
with torch.no_grad():
output, activations = model(magnitude_tensor)
# Ensure activations have the correct shape [batch_size, channels, height, width]
if len(activations.shape) == 3:
activations = activations.unsqueeze(0) # Add batch dimension if missing
return activations, magnitude_tensor
# 3D plotting function
def create_3d_plot(fft_channels, downsample_factor=1):
fig = make_subplots(
rows=3, cols=2,
specs=[[{'type': 'scene'}, {'type': 'scene'}],
[{'type': 'scene'}, {'type': 'scene'}],
[{'type': 'scene'}, {'type': 'scene'}]],
subplot_titles=(
'Blue - Magnitude', 'Blue - Phase',
'Green - Magnitude', 'Green - Phase',
'Red - Magnitude', 'Red - Phase'
)
)
for i, fft_data in enumerate(fft_channels):
fft_down = fft_data[::downsample_factor, ::downsample_factor]
magnitude = np.abs(fft_down)
phase = np.angle(fft_down)
rows, cols = magnitude.shape
x = np.linspace(-cols//2, cols//2, cols)
y = np.linspace(-rows//2, rows//2, rows)
X, Y = np.meshgrid(x, y)
fig.add_trace(
go.Surface(x=X, y=Y, z=magnitude, colorscale='Viridis', showscale=False),
row=i+1, col=1
)
fig.add_trace(
go.Surface(x=X, y=Y, z=phase, colorscale='Inferno', showscale=False),
row=i+1, col=2
)
fig.update_layout(
height=1500,
width=1200,
margin=dict(l=0, r=0, b=0, t=30),
scene_camera=dict(eye=dict(x=1.5, y=1.5, z=0.5)),
scene=dict(
xaxis=dict(title='Frequency X'),
yaxis=dict(title='Frequency Y'),
zaxis=dict(title='Magnitude/Phase')
)
)
return fig
# Streamlit UI
st.set_page_config(layout="wide")
st.title("Interactive Frequency Domain Analysis with CNN")
# Initialize session state
if 'fft_channels' not in st.session_state:
st.session_state.fft_channels = None
if 'filtered_fft' not in st.session_state:
st.session_state.filtered_fft = None
if 'reconstructed' not in st.session_state:
st.session_state.reconstructed = None
if 'show_cnn' not in st.session_state:
st.session_state.show_cnn = False
# Upload image
uploaded_file = st.file_uploader("Upload an image", type=['png', 'jpg', 'jpeg'])
if uploaded_file is not None:
file_bytes = np.frombuffer(uploaded_file.getvalue(), np.uint8)
image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
st.image(image_rgb, caption="Original Image", use_column_width=True)
# Apply FFT and store in session state
if st.session_state.fft_channels is None:
st.session_state.fft_channels = apply_fft(image)
# Frequency percentage slider
percentage = st.slider(
"Percentage of frequencies to retain:",
0.1, 100.0, 10.0, 0.1,
help="Adjust the slider to select what portion of frequency components to keep."
)
# Apply FFT filter
if st.button("Apply Filter"):
st.session_state.filtered_fft = filter_fft_percentage(st.session_state.fft_channels, percentage)
st.session_state.reconstructed = inverse_fft(st.session_state.filtered_fft)
st.session_state.show_cnn = False # Reset CNN visualization
# Display reconstructed image and FFT data
if st.session_state.reconstructed is not None:
reconstructed_rgb = cv2.cvtColor(st.session_state.reconstructed, cv2.COLOR_BGR2RGB)
st.image(reconstructed_rgb, caption="Reconstructed Image", use_column_width=True)
# FFT Data Tables
st.subheader("Frequency Data of Each Channel")
for i, channel_name in enumerate(['Blue', 'Green', 'Red']):
st.write(f"### {channel_name} Channel FFT Data")
magnitude_df = pd.DataFrame(np.abs(st.session_state.filtered_fft[i]))
phase_df = pd.DataFrame(np.angle(st.session_state.filtered_fft[i]))
st.write("#### Magnitude Data:")
st.dataframe(magnitude_df.head(10))
st.write("#### Phase Data:")
st.dataframe(phase_df.head(10))
# 3D Visualization
st.subheader("3D Frequency Components Visualization")
downsample = st.slider(
"Downsampling factor for 3D plots:",
1, 20, 5,
help="Controls the resolution of the 3D surface plots."
)
fig = create_3d_plot(st.session_state.filtered_fft, downsample)
st.plotly_chart(fig, use_container_width=True)
# Custom CSS to style the button
st.markdown("""
<style>
.centered-button {
display: flex;
justify-content: center;
align-items: center;
margin-top: 20px;
}
.stButton>button {
padding: 20px 40px;
font-size: 20px;
background-color: #4CAF50;
color: white;
border: none;
border-radius: 10px;
cursor: pointer;
}
.stButton>button:hover {
background-color: #45a049;
}
</style>
""", unsafe_allow_html=True)
# CNN Visualization Section
with st.container():
st.markdown('<div class="centered-button">', unsafe_allow_html=True)
if st.button("Pass to CNN"):
st.session_state.show_cnn = True
st.markdown('</div>', unsafe_allow_html=True)
if st.session_state.show_cnn:
st.subheader("CNN Processing Visualization")
activations, magnitude_tensor = pass_to_cnn(st.session_state.filtered_fft[0])
# Display input tensor
st.write("### Input Magnitude Tensor:")
st.image(magnitude_tensor.squeeze().numpy(),
caption="Magnitude Tensor",
use_column_width=True,
clamp=True)
# Display activations with improved visualization
st.write("### First Convolution Layer Activations")
activation = activations.detach().numpy()
if len(activation.shape) == 4:
# Create a grid of activation maps
cols = 4 # Number of columns in the grid
rows = 4 # 16 channels / 4 columns = 4 rows
fig, axs = plt.subplots(rows, cols, figsize=(20, 20))
for i in range(activation.shape[1]):
act_img = activation[0, i, :, :]
ax = axs[i//cols, i%cols]
ax.imshow(act_img, cmap='viridis')
ax.set_title(f'Channel {i+1}')
ax.axis('off')
st.pyplot(fig)
# Display sample activation values
st.write("### Activation Values Sample")
sample_activation = activation[0, 0, :10, :10] # First 10x10 values
st.dataframe(pd.DataFrame(sample_activation))
# Additional Steps After Activation Channels
st.markdown("---")
st.subheader("Next Processing Steps in CNN")
# Step 2: Second Convolution Layer Visualization
st.write("### Second Convolution Layer Features")
with torch.no_grad():
model = SimpleCNN()
output, activations = model(magnitude_tensor)
second_conv = model.conv2(activations).detach().numpy()
if len(second_conv.shape) == 4:
cols = 8 # 32 channels / 8 columns = 4 rows
rows = 4
fig2, axs2 = plt.subplots(rows, cols, figsize=(20, 10))
for i in range(second_conv.shape[1]):
act_img = second_conv[0, i, :, :]
ax = axs2[i//cols, i%cols]
ax.imshow(act_img, cmap='plasma')
ax.set_title(f'Channel {i+1}')
ax.axis('off')
st.pyplot(fig2)
# Step 3: Pooling Layer Visualization
st.write("### Adaptive Average Pooling Output")
with torch.no_grad():
pooled = F.adaptive_avg_pool2d(torch.tensor(second_conv), (8, 8)).numpy()
st.write("Pooled Features Shape:", pooled.shape)
# Normalize and display pooled features
pooled_sample = pooled[0, 0]
pooled_normalized = (pooled_sample - pooled_sample.min()) / (pooled_sample.max() - pooled_sample.min())
st.image(pooled_normalized,
caption="Sample Pooled Feature Map",
use_container_width=True,
clamp=True)
# Step 4: Final Classification
st.write("### Final Classification Scores")
with torch.no_grad():
model = SimpleCNN()
output, _ = model(magnitude_tensor)
scores = F.softmax(output, dim=1).numpy()
classes = [f"Class {i}" for i in range(10)]
fig3 = px.bar(x=classes, y=scores[0], title="Classification Probabilities")
st.plotly_chart(fig3)
# Step 5: Full Process Explanation
st.markdown("""
#### Processing Pipeline:
1. Input Magnitude Spectrum β†’
2. Conv1 Features (16 channels) β†’
3. Conv2 Features (32 channels) β†’
4. Pooled Features β†’
5. Fully Connected Layers β†’
6. Final Classification
""")