Spaces:
Sleeping
Sleeping
File size: 12,147 Bytes
1219288 4601fa2 0ce7e6e 4601fa2 1219288 4601fa2 1219288 4601fa2 1219288 4601fa2 1219288 4601fa2 1219288 4601fa2 1219288 4601fa2 1219288 4601fa2 1219288 4601fa2 1219288 4601fa2 1219288 4601fa2 1219288 4601fa2 1219288 4601fa2 1219288 4601fa2 0ce7e6e 4601fa2 0ce7e6e 4601fa2 0ce7e6e 4601fa2 0ce7e6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import streamlit as st
import numpy as np
import cv2
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import plotly.express as px
# Dummy CNN Model
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
self.fc1 = nn.Linear(32 * 8 * 8, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x1 = F.relu(self.conv1(x)) # First conv layer activation
x2 = F.relu(self.conv2(x1))
x3 = F.adaptive_avg_pool2d(x2, (8, 8))
x4 = x3.view(x3.size(0), -1)
x5 = F.relu(self.fc1(x4))
x6 = self.fc2(x5)
return x6, x1 # Return both output and first layer activations
# FFT processing functions
def apply_fft(image):
fft_channels = []
for channel in cv2.split(image):
fft = np.fft.fft2(channel)
fft_shifted = np.fft.fftshift(fft)
fft_channels.append(fft_shifted)
return fft_channels
def filter_fft_percentage(fft_channels, percentage):
filtered_fft = []
for fft_data in fft_channels:
magnitude = np.abs(fft_data)
sorted_mag = np.sort(magnitude.flatten())[::-1]
num_keep = int(len(sorted_mag) * percentage / 100)
threshold = sorted_mag[num_keep - 1] if num_keep > 0 else 0
mask = magnitude >= threshold
filtered_fft.append(fft_data * mask)
return filtered_fft
def inverse_fft(filtered_fft):
reconstructed_channels = []
for fft_data in filtered_fft:
fft_ishift = np.fft.ifftshift(fft_data)
img_reconstructed = np.fft.ifft2(fft_ishift).real
img_normalized = cv2.normalize(img_reconstructed, None, 0, 255, cv2.NORM_MINMAX)
reconstructed_channels.append(img_normalized.astype(np.uint8))
return cv2.merge(reconstructed_channels)
# CNN Pass Visualization
def pass_to_cnn(fft_image):
model = SimpleCNN()
magnitude_tensor = torch.tensor(np.abs(fft_image), dtype=torch.float32).unsqueeze(0).unsqueeze(0)
with torch.no_grad():
output, activations = model(magnitude_tensor)
# Ensure activations have the correct shape [batch_size, channels, height, width]
if len(activations.shape) == 3:
activations = activations.unsqueeze(0) # Add batch dimension if missing
return activations, magnitude_tensor
# 3D plotting function
def create_3d_plot(fft_channels, downsample_factor=1):
fig = make_subplots(
rows=3, cols=2,
specs=[[{'type': 'scene'}, {'type': 'scene'}],
[{'type': 'scene'}, {'type': 'scene'}],
[{'type': 'scene'}, {'type': 'scene'}]],
subplot_titles=(
'Blue - Magnitude', 'Blue - Phase',
'Green - Magnitude', 'Green - Phase',
'Red - Magnitude', 'Red - Phase'
)
)
for i, fft_data in enumerate(fft_channels):
fft_down = fft_data[::downsample_factor, ::downsample_factor]
magnitude = np.abs(fft_down)
phase = np.angle(fft_down)
rows, cols = magnitude.shape
x = np.linspace(-cols//2, cols//2, cols)
y = np.linspace(-rows//2, rows//2, rows)
X, Y = np.meshgrid(x, y)
fig.add_trace(
go.Surface(x=X, y=Y, z=magnitude, colorscale='Viridis', showscale=False),
row=i+1, col=1
)
fig.add_trace(
go.Surface(x=X, y=Y, z=phase, colorscale='Inferno', showscale=False),
row=i+1, col=2
)
fig.update_layout(
height=1500,
width=1200,
margin=dict(l=0, r=0, b=0, t=30),
scene_camera=dict(eye=dict(x=1.5, y=1.5, z=0.5)),
scene=dict(
xaxis=dict(title='Frequency X'),
yaxis=dict(title='Frequency Y'),
zaxis=dict(title='Magnitude/Phase')
)
)
return fig
# Streamlit UI
st.set_page_config(layout="wide")
st.title("Interactive Frequency Domain Analysis with CNN")
# Initialize session state
if 'fft_channels' not in st.session_state:
st.session_state.fft_channels = None
if 'filtered_fft' not in st.session_state:
st.session_state.filtered_fft = None
if 'reconstructed' not in st.session_state:
st.session_state.reconstructed = None
if 'show_cnn' not in st.session_state:
st.session_state.show_cnn = False
# Upload image
uploaded_file = st.file_uploader("Upload an image", type=['png', 'jpg', 'jpeg'])
if uploaded_file is not None:
file_bytes = np.frombuffer(uploaded_file.getvalue(), np.uint8)
image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
st.image(image_rgb, caption="Original Image", use_column_width=True)
# Apply FFT and store in session state
if st.session_state.fft_channels is None:
st.session_state.fft_channels = apply_fft(image)
# Frequency percentage slider
percentage = st.slider(
"Percentage of frequencies to retain:",
0.1, 100.0, 10.0, 0.1,
help="Adjust the slider to select what portion of frequency components to keep."
)
# Apply FFT filter
if st.button("Apply Filter"):
st.session_state.filtered_fft = filter_fft_percentage(st.session_state.fft_channels, percentage)
st.session_state.reconstructed = inverse_fft(st.session_state.filtered_fft)
st.session_state.show_cnn = False # Reset CNN visualization
# Display reconstructed image and FFT data
if st.session_state.reconstructed is not None:
reconstructed_rgb = cv2.cvtColor(st.session_state.reconstructed, cv2.COLOR_BGR2RGB)
st.image(reconstructed_rgb, caption="Reconstructed Image", use_column_width=True)
# FFT Data Tables
st.subheader("Frequency Data of Each Channel")
for i, channel_name in enumerate(['Blue', 'Green', 'Red']):
st.write(f"### {channel_name} Channel FFT Data")
magnitude_df = pd.DataFrame(np.abs(st.session_state.filtered_fft[i]))
phase_df = pd.DataFrame(np.angle(st.session_state.filtered_fft[i]))
st.write("#### Magnitude Data:")
st.dataframe(magnitude_df.head(10))
st.write("#### Phase Data:")
st.dataframe(phase_df.head(10))
# 3D Visualization
st.subheader("3D Frequency Components Visualization")
downsample = st.slider(
"Downsampling factor for 3D plots:",
1, 20, 5,
help="Controls the resolution of the 3D surface plots."
)
fig = create_3d_plot(st.session_state.filtered_fft, downsample)
st.plotly_chart(fig, use_container_width=True)
# Custom CSS to style the button
st.markdown("""
<style>
.centered-button {
display: flex;
justify-content: center;
align-items: center;
margin-top: 20px;
}
.stButton>button {
padding: 20px 40px;
font-size: 20px;
background-color: #4CAF50;
color: white;
border: none;
border-radius: 10px;
cursor: pointer;
}
.stButton>button:hover {
background-color: #45a049;
}
</style>
""", unsafe_allow_html=True)
# CNN Visualization Section
with st.container():
st.markdown('<div class="centered-button">', unsafe_allow_html=True)
if st.button("Pass to CNN"):
st.session_state.show_cnn = True
st.markdown('</div>', unsafe_allow_html=True)
if st.session_state.show_cnn:
st.subheader("CNN Processing Visualization")
activations, magnitude_tensor = pass_to_cnn(st.session_state.filtered_fft[0])
# Display input tensor
st.write("### Input Magnitude Tensor:")
st.image(magnitude_tensor.squeeze().numpy(),
caption="Magnitude Tensor",
use_column_width=True,
clamp=True)
# Display activations with improved visualization
st.write("### First Convolution Layer Activations")
activation = activations.detach().numpy()
if len(activation.shape) == 4:
# Create a grid of activation maps
cols = 4 # Number of columns in the grid
rows = 4 # 16 channels / 4 columns = 4 rows
fig, axs = plt.subplots(rows, cols, figsize=(20, 20))
for i in range(activation.shape[1]):
act_img = activation[0, i, :, :]
ax = axs[i//cols, i%cols]
ax.imshow(act_img, cmap='viridis')
ax.set_title(f'Channel {i+1}')
ax.axis('off')
st.pyplot(fig)
# Display sample activation values
st.write("### Activation Values Sample")
sample_activation = activation[0, 0, :10, :10] # First 10x10 values
st.dataframe(pd.DataFrame(sample_activation))
# Additional Steps After Activation Channels
st.markdown("---")
st.subheader("Next Processing Steps in CNN")
# Step 2: Second Convolution Layer Visualization
st.write("### Second Convolution Layer Features")
with torch.no_grad():
model = SimpleCNN()
output, activations = model(magnitude_tensor)
second_conv = model.conv2(activations).detach().numpy()
if len(second_conv.shape) == 4:
cols = 8 # 32 channels / 8 columns = 4 rows
rows = 4
fig2, axs2 = plt.subplots(rows, cols, figsize=(20, 10))
for i in range(second_conv.shape[1]):
act_img = second_conv[0, i, :, :]
ax = axs2[i//cols, i%cols]
ax.imshow(act_img, cmap='plasma')
ax.set_title(f'Channel {i+1}')
ax.axis('off')
st.pyplot(fig2)
# Step 3: Pooling Layer Visualization
st.write("### Adaptive Average Pooling Output")
with torch.no_grad():
pooled = F.adaptive_avg_pool2d(torch.tensor(second_conv), (8, 8)).numpy()
st.write("Pooled Features Shape:", pooled.shape)
# Normalize and display pooled features
pooled_sample = pooled[0, 0]
pooled_normalized = (pooled_sample - pooled_sample.min()) / (pooled_sample.max() - pooled_sample.min())
st.image(pooled_normalized,
caption="Sample Pooled Feature Map",
use_container_width=True,
clamp=True)
# Step 4: Final Classification
st.write("### Final Classification Scores")
with torch.no_grad():
model = SimpleCNN()
output, _ = model(magnitude_tensor)
scores = F.softmax(output, dim=1).numpy()
classes = [f"Class {i}" for i in range(10)]
fig3 = px.bar(x=classes, y=scores[0], title="Classification Probabilities")
st.plotly_chart(fig3)
# Step 5: Full Process Explanation
st.markdown("""
#### Processing Pipeline:
1. Input Magnitude Spectrum β
2. Conv1 Features (16 channels) β
3. Conv2 Features (32 channels) β
4. Pooled Features β
5. Fully Connected Layers β
6. Final Classification
""")
|