Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
from plotly.subplots import make_subplots
|
6 |
+
import pandas as pd
|
7 |
+
|
8 |
+
# FFT processing functions
|
9 |
+
def apply_fft(image):
|
10 |
+
"""Apply FFT to each channel of the image and return shifted FFT channels."""
|
11 |
+
fft_channels = []
|
12 |
+
for channel in cv2.split(image):
|
13 |
+
fft = np.fft.fft2(channel)
|
14 |
+
fft_shifted = np.fft.fftshift(fft)
|
15 |
+
fft_channels.append(fft_shifted)
|
16 |
+
return fft_channels
|
17 |
+
|
18 |
+
def filter_fft_percentage(fft_channels, percentage):
|
19 |
+
"""Filter FFT channels to keep top percentage of magnitudes."""
|
20 |
+
filtered_fft = []
|
21 |
+
for fft_data in fft_channels:
|
22 |
+
magnitude = np.abs(fft_data)
|
23 |
+
sorted_mag = np.sort(magnitude.flatten())[::-1]
|
24 |
+
num_keep = int(len(sorted_mag) * percentage / 100)
|
25 |
+
threshold = sorted_mag[num_keep - 1] if num_keep > 0 else 0
|
26 |
+
mask = magnitude >= threshold
|
27 |
+
filtered_fft.append(fft_data * mask)
|
28 |
+
return filtered_fft
|
29 |
+
|
30 |
+
def inverse_fft(filtered_fft):
|
31 |
+
"""Reconstruct image from filtered FFT channels."""
|
32 |
+
reconstructed_channels = []
|
33 |
+
for fft_data in filtered_fft:
|
34 |
+
fft_ishift = np.fft.ifftshift(fft_data)
|
35 |
+
img_reconstructed = np.fft.ifft2(fft_ishift).real
|
36 |
+
img_normalized = cv2.normalize(img_reconstructed, None, 0, 255, cv2.NORM_MINMAX)
|
37 |
+
reconstructed_channels.append(img_normalized.astype(np.uint8))
|
38 |
+
return cv2.merge(reconstructed_channels)
|
39 |
+
|
40 |
+
def create_3d_plot(fft_channels, downsample_factor=1):
|
41 |
+
"""Create interactive 3D surface plots using Plotly."""
|
42 |
+
fig = make_subplots(
|
43 |
+
rows=3, cols=2,
|
44 |
+
specs=[[{'type': 'scene'}, {'type': 'scene'}],
|
45 |
+
[{'type': 'scene'}, {'type': 'scene'}],
|
46 |
+
[{'type': 'scene'}, {'type': 'scene'}]],
|
47 |
+
subplot_titles=(
|
48 |
+
'Blue - Magnitude', 'Blue - Phase',
|
49 |
+
'Green - Magnitude', 'Green - Phase',
|
50 |
+
'Red - Magnitude', 'Red - Phase'
|
51 |
+
)
|
52 |
+
)
|
53 |
+
|
54 |
+
channel_names = ['Blue', 'Green', 'Red']
|
55 |
+
|
56 |
+
for i, fft_data in enumerate(fft_channels):
|
57 |
+
# Downsample data for better performance
|
58 |
+
fft_down = fft_data[::downsample_factor, ::downsample_factor]
|
59 |
+
magnitude = np.abs(fft_down)
|
60 |
+
phase = np.angle(fft_down)
|
61 |
+
|
62 |
+
# Create grid coordinates
|
63 |
+
rows, cols = magnitude.shape
|
64 |
+
x = np.linspace(-cols//2, cols//2, cols)
|
65 |
+
y = np.linspace(-rows//2, rows//2, rows)
|
66 |
+
X, Y = np.meshgrid(x, y)
|
67 |
+
|
68 |
+
# Magnitude plot
|
69 |
+
fig.add_trace(
|
70 |
+
go.Surface(x=X, y=Y, z=magnitude, colorscale='Viridis', showscale=False),
|
71 |
+
row=i+1, col=1
|
72 |
+
)
|
73 |
+
|
74 |
+
# Phase plot
|
75 |
+
fig.add_trace(
|
76 |
+
go.Surface(x=X, y=Y, z=phase, colorscale='Inferno', showscale=False),
|
77 |
+
row=i+1, col=2
|
78 |
+
)
|
79 |
+
|
80 |
+
# Update layout for better visualization
|
81 |
+
fig.update_layout(
|
82 |
+
height=1500,
|
83 |
+
width=1200,
|
84 |
+
margin=dict(l=0, r=0, b=0, t=30),
|
85 |
+
scene_camera=dict(eye=dict(x=1.5, y=1.5, z=0.5)),
|
86 |
+
scene=dict(
|
87 |
+
xaxis=dict(title='Frequency X'),
|
88 |
+
yaxis=dict(title='Frequency Y'),
|
89 |
+
zaxis=dict(title='Magnitude/Phase')
|
90 |
+
)
|
91 |
+
)
|
92 |
+
return fig
|
93 |
+
|
94 |
+
# Streamlit UI
|
95 |
+
st.set_page_config(layout="wide")
|
96 |
+
st.title("Interactive Frequency Domain Analysis")
|
97 |
+
|
98 |
+
# Introduction Text
|
99 |
+
st.subheader("Introduction to FFT and Image Filtering")
|
100 |
+
st.write(
|
101 |
+
"""Fast Fourier Transform (FFT) is a technique to transform an image from the spatial domain to the frequency domain.
|
102 |
+
In this domain, each frequency represents a different aspect of the image's texture and details.
|
103 |
+
By filtering out certain frequencies, you can modify the image's appearance, enhancing or suppressing certain features."""
|
104 |
+
)
|
105 |
+
|
106 |
+
uploaded_file = st.file_uploader("Upload an image", type=['png', 'jpg', 'jpeg'])
|
107 |
+
|
108 |
+
if uploaded_file is not None:
|
109 |
+
# Read and display original image
|
110 |
+
file_bytes = np.frombuffer(uploaded_file.getvalue(), np.uint8)
|
111 |
+
image = cv2.imdecode(file_bytes, cv2.IMREAD_COLOR)
|
112 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
113 |
+
st.image(image_rgb, caption="Original Image", use_column_width=True)
|
114 |
+
|
115 |
+
# Process FFT and store in session state
|
116 |
+
if 'fft_channels' not in st.session_state:
|
117 |
+
st.session_state.fft_channels = apply_fft(image)
|
118 |
+
|
119 |
+
# Create a form to submit frequency percentage selection
|
120 |
+
with st.form(key='fft_form'):
|
121 |
+
percentage = st.slider(
|
122 |
+
"Percentage of frequencies to retain:",
|
123 |
+
min_value=0.1, max_value=100.0, value=10.0, step=0.1,
|
124 |
+
help="Adjust the slider to select what portion of frequency components to keep. Lower values blur the image."
|
125 |
+
)
|
126 |
+
submit_button = st.form_submit_button(label="Apply Filter")
|
127 |
+
|
128 |
+
if submit_button:
|
129 |
+
# Apply filtering and reconstruct image
|
130 |
+
filtered_fft = filter_fft_percentage(st.session_state.fft_channels, percentage)
|
131 |
+
reconstructed = inverse_fft(filtered_fft)
|
132 |
+
reconstructed_rgb = cv2.cvtColor(reconstructed, cv2.COLOR_BGR2RGB)
|
133 |
+
st.image(reconstructed_rgb, caption="Reconstructed Image", use_column_width=True)
|
134 |
+
|
135 |
+
# Display FFT Data in Table Format
|
136 |
+
st.subheader("Frequency Data of Each Channel")
|
137 |
+
fft_data_dict = {}
|
138 |
+
for i, channel_name in enumerate(['Blue', 'Green', 'Red']):
|
139 |
+
magnitude = np.abs(st.session_state.fft_channels[i])
|
140 |
+
phase = np.angle(st.session_state.fft_channels[i])
|
141 |
+
fft_data_dict[channel_name] = {'Magnitude': magnitude, 'Phase': phase}
|
142 |
+
|
143 |
+
# Create DataFrames for each channel's FFT data
|
144 |
+
for channel_name, data in fft_data_dict.items():
|
145 |
+
st.write(f"### {channel_name} Channel FFT Data")
|
146 |
+
magnitude_df = pd.DataFrame(data['Magnitude'])
|
147 |
+
phase_df = pd.DataFrame(data['Phase'])
|
148 |
+
st.write("#### Magnitude Data:")
|
149 |
+
st.dataframe(magnitude_df.head(10)) # Display first 10 rows for brevity
|
150 |
+
st.write("#### Phase Data:")
|
151 |
+
st.dataframe(phase_df.head(10)) # Display first 10 rows for brevity
|
152 |
+
|
153 |
+
# Download button for reconstructed image
|
154 |
+
_, encoded_img = cv2.imencode('.png', reconstructed)
|
155 |
+
st.download_button(
|
156 |
+
"Download Reconstructed Image",
|
157 |
+
encoded_img.tobytes(),
|
158 |
+
"reconstructed.png",
|
159 |
+
"image/png"
|
160 |
+
)
|
161 |
+
|
162 |
+
# 3D visualization controls
|
163 |
+
st.subheader("3D Frequency Components Visualization")
|
164 |
+
downsample = st.slider(
|
165 |
+
"Downsampling factor for 3D plots:",
|
166 |
+
min_value=1, max_value=20, value=5,
|
167 |
+
help="Controls the resolution of the 3D surface plots. Higher values improve performance but reduce the plot's detail."
|
168 |
+
)
|
169 |
+
|
170 |
+
# Generate and display 3D plots
|
171 |
+
fig = create_3d_plot(filtered_fft, downsample)
|
172 |
+
st.plotly_chart(fig, use_container_width=True)
|