Mattral's picture
Update app.py
6f56f73 verified
import streamlit as st
import numpy as np
import librosa
import librosa.display
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import plotly.express as px
import soundfile as sf
from scipy.signal import stft
import math
# -------------------------------
# CNN Model for Audio Analysis
# -------------------------------
class AudioCNN(nn.Module):
def __init__(self):
super(AudioCNN, self).__init__()
# Convolutional layers
self.conv1 = nn.Conv2d(1, 16, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
# Pooling layer
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
# Fully connected layers (with dynamic sizing)
self.fc1 = None
self.fc2 = nn.Linear(256, 128)
self.fc3 = nn.Linear(128, 10)
# Dropout for regularization
self.dropout = nn.Dropout(0.5)
def forward(self, x):
x1 = F.relu(self.conv1(x))
x2 = self.pool(x1)
x3 = F.relu(self.conv2(x2))
x4 = self.pool(x3)
x5 = F.relu(self.conv3(x4))
x6 = self.pool(x5)
if self.fc1 is None:
fc1_input_size = x6.numel() // x6.size(0)
self.fc1 = nn.Linear(fc1_input_size, 256)
x7 = x6.view(x6.size(0), -1)
x8 = F.relu(self.fc1(x7))
x9 = self.dropout(x8)
x10 = F.relu(self.fc2(x9))
x11 = self.fc3(x10)
return x11, [x2, x4, x6], x8
# -------------------------------
# Audio Processing Functions
# -------------------------------
def load_audio(file):
audio, sr = librosa.load(file, sr=None, mono=True)
return audio, sr
def apply_fft(audio):
fft = np.fft.fft(audio)
magnitude = np.abs(fft)
phase = np.angle(fft)
return fft, magnitude, phase
def filter_fft(fft, percentage):
magnitude = np.abs(fft)
sorted_indices = np.argsort(magnitude)[::-1]
num_keep = int(len(sorted_indices) * percentage / 100)
mask = np.zeros_like(fft)
mask[sorted_indices[:num_keep]] = 1
return fft * mask
def create_spectrogram(audio, sr):
n_fft = 2048
hop_length = 512
S = librosa.stft(audio, n_fft=n_fft, hop_length=hop_length)
spectrogram = np.abs(S)
return spectrogram, n_fft, hop_length
# -------------------------------
# Visualization Functions
# -------------------------------
def plot_waveform(audio, sr, title):
fig = go.Figure()
time = np.arange(len(audio)) / sr
fig.add_trace(go.Scatter(x=time, y=audio, mode='lines'))
fig.update_layout(title=title, xaxis_title='Time (s)', yaxis_title='Amplitude')
return fig
def create_waveform_table(audio, sr, num_samples=100):
time = np.arange(len(audio)) / sr
indices = np.linspace(0, len(audio)-1, num_samples, dtype=int)
df = pd.DataFrame({"Time (s)": time[indices], "Amplitude": audio[indices]})
return df
def plot_fft(magnitude, phase, sr):
fig = make_subplots(rows=2, cols=1, subplot_titles=('Magnitude Spectrum', 'Phase Spectrum'))
freq = np.fft.fftfreq(len(magnitude), 1/sr)
fig.add_trace(go.Scatter(x=freq, y=magnitude, mode='lines', name='Magnitude'), row=1, col=1)
fig.add_trace(go.Scatter(x=freq, y=phase, mode='lines', name='Phase'), row=2, col=1)
fig.update_xaxes(title_text='Frequency (Hz)', row=1, col=1)
fig.update_xaxes(title_text='Frequency (Hz)', row=2, col=1)
fig.update_yaxes(title_text='Magnitude', row=1, col=1)
fig.update_yaxes(title_text='Phase (radians)', row=2, col=1)
return fig
def plot_fft_bands(magnitude, phase, sr):
freq = np.fft.fftfreq(len(magnitude), 1/sr)
pos_mask = freq >= 0
freq, magnitude, phase = freq[pos_mask], magnitude[pos_mask], phase[pos_mask]
bass_mask = (freq >= 20) & (freq < 250)
mid_mask = (freq >= 250) & (freq < 4000)
treble_mask = (freq >= 4000) & (freq <= sr/2)
fig = make_subplots(rows=2, cols=1, subplot_titles=('Magnitude Spectrum by Bands', 'Phase Spectrum by Bands'))
fig.add_trace(go.Scatter(x=freq[bass_mask], y=magnitude[bass_mask], mode='lines', name='Bass'), row=1, col=1)
fig.add_trace(go.Scatter(x=freq[mid_mask], y=magnitude[mid_mask], mode='lines', name='Mid'), row=1, col=1)
fig.add_trace(go.Scatter(x=freq[treble_mask], y=magnitude[treble_mask], mode='lines', name='Treble'), row=1, col=1)
fig.add_trace(go.Scatter(x=freq[bass_mask], y=phase[bass_mask], mode='lines', name='Bass'), row=2, col=1)
fig.add_trace(go.Scatter(x=freq[mid_mask], y=phase[mid_mask], mode='lines', name='Mid'), row=2, col=1)
fig.add_trace(go.Scatter(x=freq[treble_mask], y=phase[treble_mask], mode='lines', name='Treble'), row=2, col=1)
fig.update_xaxes(title_text='Frequency (Hz)', row=1, col=1)
fig.update_xaxes(title_text='Frequency (Hz)', row=2, col=1)
fig.update_yaxes(title_text='Magnitude', row=1, col=1)
fig.update_yaxes(title_text='Phase (radians)', row=2, col=1)
return fig
def create_fft_table(magnitude, phase, sr, num_samples=100):
freq = np.fft.fftfreq(len(magnitude), 1/sr)
pos_mask = freq >= 0
freq, magnitude, phase = freq[pos_mask], magnitude[pos_mask], phase[pos_mask]
indices = np.linspace(0, len(freq)-1, num_samples, dtype=int)
df = pd.DataFrame({
"Frequency (Hz)": freq[indices],
"Magnitude": magnitude[indices],
"Phase (radians)": phase[indices]
})
return df
def plot_3d_polar_fft(magnitude, phase, sr):
# Get positive frequencies
freq = np.fft.fftfreq(len(magnitude), 1/sr)
pos_mask = freq >= 0
freq, mag, ph = freq[pos_mask], magnitude[pos_mask], phase[pos_mask]
# Convert polar to Cartesian coordinates
x = mag * np.cos(ph)
y = mag * np.sin(ph)
z = freq # Use frequency as z-axis
# Downsample the data to avoid huge message sizes.
# Compute a decimation factor so that approximately 500 points are plotted.
step = max(1, len(x) // 500)
x, y, z, ph = x[::step], y[::step], z[::step], ph[::step]
# Create a coarser grid for the contour surface.
n_rep = 10
X_surface = np.tile(x, (n_rep, 1))
Y_surface = np.tile(y, (n_rep, 1))
Z_surface = np.tile(z, (n_rep, 1))
surface = go.Surface(
x=X_surface,
y=Y_surface,
z=Z_surface,
colorscale='Viridis',
opacity=0.6,
showscale=False,
contours={
"x": {"show": True, "start": float(np.min(x)), "end": float(np.max(x)), "size": float((np.max(x)-np.min(x))/10)},
"y": {"show": True, "start": float(np.min(y)), "end": float(np.max(y)), "size": float((np.max(y)-np.min(y))/10)},
"z": {"show": True, "start": float(np.min(z)), "end": float(np.max(z)), "size": float((np.max(z)-np.min(z))/10)},
},
)
scatter = go.Scatter3d(
x=x,
y=y,
z=z,
mode='markers',
marker=dict(
size=3,
color=ph, # color by phase
colorscale='Viridis',
opacity=0.8,
colorbar=dict(title='Phase (radians)')
)
)
fig = go.Figure(data=[surface, scatter])
fig.update_layout(scene=dict(
xaxis_title='Real Component',
yaxis_title='Imaginary Component',
zaxis_title='Frequency (Hz)',
camera=dict(eye=dict(x=1.5, y=1.5, z=0.5))
), margin=dict(l=0, r=0, b=0, t=0))
return fig
def plot_spectrogram(spectrogram, sr, hop_length):
fig, ax = plt.subplots()
img = librosa.display.specshow(librosa.amplitude_to_db(spectrogram, ref=np.max),
sr=sr, hop_length=hop_length, x_axis='time', y_axis='log', ax=ax)
plt.colorbar(img, ax=ax, format='%+2.0f dB')
plt.title('Spectrogram')
return fig
def create_spectrogram_table(spectrogram, num_rows=10, num_cols=10):
sub_spec = spectrogram[:num_rows, :num_cols]
df = pd.DataFrame(sub_spec,
index=[f'Freq Bin {i}' for i in range(sub_spec.shape[0])],
columns=[f'Time Bin {j}' for j in range(sub_spec.shape[1])])
return df
def create_activation_table(activation, num_rows=10, num_cols=10):
sub_act = activation[:num_rows, :num_cols]
df = pd.DataFrame(sub_act,
index=[f'Row {i}' for i in range(sub_act.shape[0])],
columns=[f'Col {j}' for j in range(sub_act.shape[1])])
return df
# -------------------------------
# Streamlit UI & Main App
# -------------------------------
st.set_page_config(layout="wide")
st.title("Audio Frequency Analysis with CNN and FFT")
st.markdown("""
### Welcome to the Audio Frequency Analysis Tool!
This application allows you to:
- **Upload an audio file** and visualize its waveform along with a data table.
- **Analyze frequency components** using FFT (with both 2D and enhanced 3D polar plots).
- **Highlight frequency bands:** Bass (20–250 Hz), Mid (250–4000 Hz), Treble (4000 Hz to Nyquist).
- **Filter frequency components** and reconstruct the waveform.
- **Generate a spectrogram** for time-frequency analysis with a sample data table.
- **Inspect CNN activations** (pooling and dense layers) arranged in grid layouts.
- **Final Audio Classification:** Classify the audio for gender (Male/Female) and tone.
""")
# File uploader
uploaded_file = st.file_uploader("Upload an audio file (WAV, MP3, OGG)", type=['wav', 'mp3', 'ogg'])
if uploaded_file is not None:
audio, sr = load_audio(uploaded_file)
# --- Section 1: Raw Audio Waveform ---
st.header("1. Raw Audio Waveform")
st.markdown("""
The waveform represents the amplitude over time.
**Graph:** Amplitude vs. Time.
**Data Table:** Sampled values.
""")
waveform_fig = plot_waveform(audio, sr, "Original Waveform")
st.plotly_chart(waveform_fig, use_container_width=True)
st.dataframe(create_waveform_table(audio, sr))
# --- Section 2: Frequency Domain Analysis ---
st.header("2. Frequency Domain Analysis")
st.markdown("""
**FFT Analysis:** Decompose the audio into frequency components.
- **Magnitude Spectrum:** Strength of frequencies.
- **Phase Spectrum:** Phase angles.
""")
fft, magnitude, phase = apply_fft(audio)
col1, col2 = st.columns(2)
with col1:
st.subheader("2D FFT Plot")
st.plotly_chart(plot_fft(magnitude, phase, sr), use_container_width=True)
with col2:
st.subheader("Enhanced 3D Polar FFT Plot with Contours")
st.plotly_chart(plot_3d_polar_fft(magnitude, phase, sr), use_container_width=True)
st.subheader("FFT Data Table (Sampled)")
st.dataframe(create_fft_table(magnitude, phase, sr))
st.subheader("Frequency Bands: Bass, Mid, Treble")
st.plotly_chart(plot_fft_bands(magnitude, phase, sr), use_container_width=True)
# --- Section 3: Frequency Filtering ---
st.header("3. Frequency Filtering")
st.markdown("""
Filter the audio signal by retaining a percentage of the strongest frequencies.
Adjust the slider for retention percentage.
**Graph:** Filtered waveform.
**Data Table:** Sampled values.
""")
percentage = st.slider("Percentage of frequencies to retain:", 0.1, 100.0, 10.0, 0.1)
if st.button("Apply Frequency Filter"):
filtered_fft = filter_fft(fft, percentage)
reconstructed = np.fft.ifft(filtered_fft).real
col1, col2 = st.columns(2)
with col1:
st.plotly_chart(plot_waveform(reconstructed, sr, "Filtered Waveform"), use_container_width=True)
with col2:
st.audio(reconstructed, sample_rate=sr)
st.dataframe(create_waveform_table(reconstructed, sr))
# --- Section 4: Spectrogram Analysis ---
st.header("4. Spectrogram Analysis")
st.markdown("""
A spectrogram shows how frequency content evolves over time.
**Graph:** Spectrogram (log-frequency scale).
**Data Table:** A subsection of the spectrogram matrix.
""")
spectrogram, n_fft, hop_length = create_spectrogram(audio, sr)
st.pyplot(plot_spectrogram(spectrogram, sr, hop_length))
st.dataframe(create_spectrogram_table(spectrogram))
# --- Section 5: CNN Analysis (Pooling & Dense Activations) ---
st.header("5. CNN Analysis: Pooling and Dense Activations")
st.markdown("""
Instead of classification probabilities, inspect internal activations:
- **Pooling Layer Outputs:** Arranged in a grid layout.
- **Dense Layer Activation:** Feature vector from the dense layer.
""")
if st.button("Run CNN Analysis"):
spec_tensor = torch.tensor(spectrogram[np.newaxis, np.newaxis, ...], dtype=torch.float32)
model = AudioCNN()
with torch.no_grad():
output, pooling_outputs, dense_activation = model(spec_tensor)
for idx, activation in enumerate(pooling_outputs):
st.subheader(f"Pooling Layer {idx+1} Output")
act = activation[0].cpu().numpy()
num_channels = act.shape[0]
ncols = 4
nrows = math.ceil(num_channels / ncols)
fig, axes = plt.subplots(nrows, ncols, figsize=(3*ncols, 3*nrows))
axes = axes.flatten()
for i in range(nrows * ncols):
if i < num_channels:
axes[i].imshow(act[i], aspect='auto', origin='lower', cmap='viridis')
axes[i].set_title(f'Channel {i+1}', fontsize=8)
axes[i].axis('off')
else:
axes[i].axis('off')
st.pyplot(fig)
st.markdown("**Data Table for Pooling Layer Activation (Channel 1, Sampled)**")
df_act = create_activation_table(act[0])
st.dataframe(df_act)
st.subheader("Dense Layer Activation")
dense_act = dense_activation[0].cpu().numpy()
df_dense = pd.DataFrame({
"Feature Index": np.arange(len(dense_act)),
"Activation Value": dense_act
})
st.plotly_chart(px.bar(df_dense, x="Feature Index", y="Activation Value"), use_container_width=True)
st.dataframe(df_dense)
# --- Section 6: Final Audio Classification (Gender & Tone) ---
st.header("6. Final Audio Classification: Gender and Tone")
st.markdown("""
In this final step, a pretrained model classifies the audio as Male or Female,
and determines its tone (High Tone vs. Low Tone).
**Note:** This example uses a placeholder model. Replace the dummy model and random outputs with your actual pretrained model.
""")
if st.button("Run Final Classification"):
# Extract MFCC features as an example (adjust as needed)
mfccs = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=40)
features = np.mean(mfccs, axis=1) # average over time
features_tensor = torch.tensor(features, dtype=torch.float32).unsqueeze(0)
# Dummy classifier model for demonstration
class GenderToneClassifier(nn.Module):
def __init__(self):
super(GenderToneClassifier, self).__init__()
self.fc = nn.Linear(40, 4) # 4 outputs: [Male, Female, High Tone, Low Tone]
def forward(self, x):
return self.fc(x)
classifier = GenderToneClassifier()
# In practice, load your pretrained weights here.
with torch.no_grad():
output = classifier(features_tensor)
probs = F.softmax(output, dim=1).numpy()[0]
# Interpret outputs: assume first 2 are gender, next 2 are tone.
gender = "Male" if probs[0] > probs[1] else "Female"
tone = "High Tone" if probs[2] > probs[3] else "Low Tone"
st.markdown(f"**Predicted Gender:** {gender}")
st.markdown(f"**Predicted Tone:** {tone}")
categories = ["Male", "Female", "High Tone", "Low Tone"]
df_class = pd.DataFrame({"Category": categories, "Probability": probs})
st.plotly_chart(px.bar(df_class, x="Category", y="Probability"), use_container_width=True)
st.dataframe(df_class)
# -------------------------------
# Style Enhancements
# -------------------------------
st.markdown("""
<style>
.stButton>button {
padding: 10px 20px;
font-size: 16px;
background-color: #4CAF50;
color: white;
}
.stSlider>div>div>div>div {
background-color: #4CAF50;
}
</style>
""", unsafe_allow_html=True)