Spaces:
Sleeping
Sleeping
File size: 16,696 Bytes
1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 6f56f73 1835c00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
import streamlit as st
import numpy as np
import librosa
import librosa.display
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import matplotlib.pyplot as plt
import plotly.express as px
import soundfile as sf
from scipy.signal import stft
import math
# -------------------------------
# CNN Model for Audio Analysis
# -------------------------------
class AudioCNN(nn.Module):
def __init__(self):
super(AudioCNN, self).__init__()
# Convolutional layers
self.conv1 = nn.Conv2d(1, 16, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
# Pooling layer
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
# Fully connected layers (with dynamic sizing)
self.fc1 = None
self.fc2 = nn.Linear(256, 128)
self.fc3 = nn.Linear(128, 10)
# Dropout for regularization
self.dropout = nn.Dropout(0.5)
def forward(self, x):
x1 = F.relu(self.conv1(x))
x2 = self.pool(x1)
x3 = F.relu(self.conv2(x2))
x4 = self.pool(x3)
x5 = F.relu(self.conv3(x4))
x6 = self.pool(x5)
if self.fc1 is None:
fc1_input_size = x6.numel() // x6.size(0)
self.fc1 = nn.Linear(fc1_input_size, 256)
x7 = x6.view(x6.size(0), -1)
x8 = F.relu(self.fc1(x7))
x9 = self.dropout(x8)
x10 = F.relu(self.fc2(x9))
x11 = self.fc3(x10)
return x11, [x2, x4, x6], x8
# -------------------------------
# Audio Processing Functions
# -------------------------------
def load_audio(file):
audio, sr = librosa.load(file, sr=None, mono=True)
return audio, sr
def apply_fft(audio):
fft = np.fft.fft(audio)
magnitude = np.abs(fft)
phase = np.angle(fft)
return fft, magnitude, phase
def filter_fft(fft, percentage):
magnitude = np.abs(fft)
sorted_indices = np.argsort(magnitude)[::-1]
num_keep = int(len(sorted_indices) * percentage / 100)
mask = np.zeros_like(fft)
mask[sorted_indices[:num_keep]] = 1
return fft * mask
def create_spectrogram(audio, sr):
n_fft = 2048
hop_length = 512
S = librosa.stft(audio, n_fft=n_fft, hop_length=hop_length)
spectrogram = np.abs(S)
return spectrogram, n_fft, hop_length
# -------------------------------
# Visualization Functions
# -------------------------------
def plot_waveform(audio, sr, title):
fig = go.Figure()
time = np.arange(len(audio)) / sr
fig.add_trace(go.Scatter(x=time, y=audio, mode='lines'))
fig.update_layout(title=title, xaxis_title='Time (s)', yaxis_title='Amplitude')
return fig
def create_waveform_table(audio, sr, num_samples=100):
time = np.arange(len(audio)) / sr
indices = np.linspace(0, len(audio)-1, num_samples, dtype=int)
df = pd.DataFrame({"Time (s)": time[indices], "Amplitude": audio[indices]})
return df
def plot_fft(magnitude, phase, sr):
fig = make_subplots(rows=2, cols=1, subplot_titles=('Magnitude Spectrum', 'Phase Spectrum'))
freq = np.fft.fftfreq(len(magnitude), 1/sr)
fig.add_trace(go.Scatter(x=freq, y=magnitude, mode='lines', name='Magnitude'), row=1, col=1)
fig.add_trace(go.Scatter(x=freq, y=phase, mode='lines', name='Phase'), row=2, col=1)
fig.update_xaxes(title_text='Frequency (Hz)', row=1, col=1)
fig.update_xaxes(title_text='Frequency (Hz)', row=2, col=1)
fig.update_yaxes(title_text='Magnitude', row=1, col=1)
fig.update_yaxes(title_text='Phase (radians)', row=2, col=1)
return fig
def plot_fft_bands(magnitude, phase, sr):
freq = np.fft.fftfreq(len(magnitude), 1/sr)
pos_mask = freq >= 0
freq, magnitude, phase = freq[pos_mask], magnitude[pos_mask], phase[pos_mask]
bass_mask = (freq >= 20) & (freq < 250)
mid_mask = (freq >= 250) & (freq < 4000)
treble_mask = (freq >= 4000) & (freq <= sr/2)
fig = make_subplots(rows=2, cols=1, subplot_titles=('Magnitude Spectrum by Bands', 'Phase Spectrum by Bands'))
fig.add_trace(go.Scatter(x=freq[bass_mask], y=magnitude[bass_mask], mode='lines', name='Bass'), row=1, col=1)
fig.add_trace(go.Scatter(x=freq[mid_mask], y=magnitude[mid_mask], mode='lines', name='Mid'), row=1, col=1)
fig.add_trace(go.Scatter(x=freq[treble_mask], y=magnitude[treble_mask], mode='lines', name='Treble'), row=1, col=1)
fig.add_trace(go.Scatter(x=freq[bass_mask], y=phase[bass_mask], mode='lines', name='Bass'), row=2, col=1)
fig.add_trace(go.Scatter(x=freq[mid_mask], y=phase[mid_mask], mode='lines', name='Mid'), row=2, col=1)
fig.add_trace(go.Scatter(x=freq[treble_mask], y=phase[treble_mask], mode='lines', name='Treble'), row=2, col=1)
fig.update_xaxes(title_text='Frequency (Hz)', row=1, col=1)
fig.update_xaxes(title_text='Frequency (Hz)', row=2, col=1)
fig.update_yaxes(title_text='Magnitude', row=1, col=1)
fig.update_yaxes(title_text='Phase (radians)', row=2, col=1)
return fig
def create_fft_table(magnitude, phase, sr, num_samples=100):
freq = np.fft.fftfreq(len(magnitude), 1/sr)
pos_mask = freq >= 0
freq, magnitude, phase = freq[pos_mask], magnitude[pos_mask], phase[pos_mask]
indices = np.linspace(0, len(freq)-1, num_samples, dtype=int)
df = pd.DataFrame({
"Frequency (Hz)": freq[indices],
"Magnitude": magnitude[indices],
"Phase (radians)": phase[indices]
})
return df
def plot_3d_polar_fft(magnitude, phase, sr):
# Get positive frequencies
freq = np.fft.fftfreq(len(magnitude), 1/sr)
pos_mask = freq >= 0
freq, mag, ph = freq[pos_mask], magnitude[pos_mask], phase[pos_mask]
# Convert polar to Cartesian coordinates
x = mag * np.cos(ph)
y = mag * np.sin(ph)
z = freq # Use frequency as z-axis
# Downsample the data to avoid huge message sizes.
# Compute a decimation factor so that approximately 500 points are plotted.
step = max(1, len(x) // 500)
x, y, z, ph = x[::step], y[::step], z[::step], ph[::step]
# Create a coarser grid for the contour surface.
n_rep = 10
X_surface = np.tile(x, (n_rep, 1))
Y_surface = np.tile(y, (n_rep, 1))
Z_surface = np.tile(z, (n_rep, 1))
surface = go.Surface(
x=X_surface,
y=Y_surface,
z=Z_surface,
colorscale='Viridis',
opacity=0.6,
showscale=False,
contours={
"x": {"show": True, "start": float(np.min(x)), "end": float(np.max(x)), "size": float((np.max(x)-np.min(x))/10)},
"y": {"show": True, "start": float(np.min(y)), "end": float(np.max(y)), "size": float((np.max(y)-np.min(y))/10)},
"z": {"show": True, "start": float(np.min(z)), "end": float(np.max(z)), "size": float((np.max(z)-np.min(z))/10)},
},
)
scatter = go.Scatter3d(
x=x,
y=y,
z=z,
mode='markers',
marker=dict(
size=3,
color=ph, # color by phase
colorscale='Viridis',
opacity=0.8,
colorbar=dict(title='Phase (radians)')
)
)
fig = go.Figure(data=[surface, scatter])
fig.update_layout(scene=dict(
xaxis_title='Real Component',
yaxis_title='Imaginary Component',
zaxis_title='Frequency (Hz)',
camera=dict(eye=dict(x=1.5, y=1.5, z=0.5))
), margin=dict(l=0, r=0, b=0, t=0))
return fig
def plot_spectrogram(spectrogram, sr, hop_length):
fig, ax = plt.subplots()
img = librosa.display.specshow(librosa.amplitude_to_db(spectrogram, ref=np.max),
sr=sr, hop_length=hop_length, x_axis='time', y_axis='log', ax=ax)
plt.colorbar(img, ax=ax, format='%+2.0f dB')
plt.title('Spectrogram')
return fig
def create_spectrogram_table(spectrogram, num_rows=10, num_cols=10):
sub_spec = spectrogram[:num_rows, :num_cols]
df = pd.DataFrame(sub_spec,
index=[f'Freq Bin {i}' for i in range(sub_spec.shape[0])],
columns=[f'Time Bin {j}' for j in range(sub_spec.shape[1])])
return df
def create_activation_table(activation, num_rows=10, num_cols=10):
sub_act = activation[:num_rows, :num_cols]
df = pd.DataFrame(sub_act,
index=[f'Row {i}' for i in range(sub_act.shape[0])],
columns=[f'Col {j}' for j in range(sub_act.shape[1])])
return df
# -------------------------------
# Streamlit UI & Main App
# -------------------------------
st.set_page_config(layout="wide")
st.title("Audio Frequency Analysis with CNN and FFT")
st.markdown("""
### Welcome to the Audio Frequency Analysis Tool!
This application allows you to:
- **Upload an audio file** and visualize its waveform along with a data table.
- **Analyze frequency components** using FFT (with both 2D and enhanced 3D polar plots).
- **Highlight frequency bands:** Bass (20–250 Hz), Mid (250–4000 Hz), Treble (4000 Hz to Nyquist).
- **Filter frequency components** and reconstruct the waveform.
- **Generate a spectrogram** for time-frequency analysis with a sample data table.
- **Inspect CNN activations** (pooling and dense layers) arranged in grid layouts.
- **Final Audio Classification:** Classify the audio for gender (Male/Female) and tone.
""")
# File uploader
uploaded_file = st.file_uploader("Upload an audio file (WAV, MP3, OGG)", type=['wav', 'mp3', 'ogg'])
if uploaded_file is not None:
audio, sr = load_audio(uploaded_file)
# --- Section 1: Raw Audio Waveform ---
st.header("1. Raw Audio Waveform")
st.markdown("""
The waveform represents the amplitude over time.
**Graph:** Amplitude vs. Time.
**Data Table:** Sampled values.
""")
waveform_fig = plot_waveform(audio, sr, "Original Waveform")
st.plotly_chart(waveform_fig, use_container_width=True)
st.dataframe(create_waveform_table(audio, sr))
# --- Section 2: Frequency Domain Analysis ---
st.header("2. Frequency Domain Analysis")
st.markdown("""
**FFT Analysis:** Decompose the audio into frequency components.
- **Magnitude Spectrum:** Strength of frequencies.
- **Phase Spectrum:** Phase angles.
""")
fft, magnitude, phase = apply_fft(audio)
col1, col2 = st.columns(2)
with col1:
st.subheader("2D FFT Plot")
st.plotly_chart(plot_fft(magnitude, phase, sr), use_container_width=True)
with col2:
st.subheader("Enhanced 3D Polar FFT Plot with Contours")
st.plotly_chart(plot_3d_polar_fft(magnitude, phase, sr), use_container_width=True)
st.subheader("FFT Data Table (Sampled)")
st.dataframe(create_fft_table(magnitude, phase, sr))
st.subheader("Frequency Bands: Bass, Mid, Treble")
st.plotly_chart(plot_fft_bands(magnitude, phase, sr), use_container_width=True)
# --- Section 3: Frequency Filtering ---
st.header("3. Frequency Filtering")
st.markdown("""
Filter the audio signal by retaining a percentage of the strongest frequencies.
Adjust the slider for retention percentage.
**Graph:** Filtered waveform.
**Data Table:** Sampled values.
""")
percentage = st.slider("Percentage of frequencies to retain:", 0.1, 100.0, 10.0, 0.1)
if st.button("Apply Frequency Filter"):
filtered_fft = filter_fft(fft, percentage)
reconstructed = np.fft.ifft(filtered_fft).real
col1, col2 = st.columns(2)
with col1:
st.plotly_chart(plot_waveform(reconstructed, sr, "Filtered Waveform"), use_container_width=True)
with col2:
st.audio(reconstructed, sample_rate=sr)
st.dataframe(create_waveform_table(reconstructed, sr))
# --- Section 4: Spectrogram Analysis ---
st.header("4. Spectrogram Analysis")
st.markdown("""
A spectrogram shows how frequency content evolves over time.
**Graph:** Spectrogram (log-frequency scale).
**Data Table:** A subsection of the spectrogram matrix.
""")
spectrogram, n_fft, hop_length = create_spectrogram(audio, sr)
st.pyplot(plot_spectrogram(spectrogram, sr, hop_length))
st.dataframe(create_spectrogram_table(spectrogram))
# --- Section 5: CNN Analysis (Pooling & Dense Activations) ---
st.header("5. CNN Analysis: Pooling and Dense Activations")
st.markdown("""
Instead of classification probabilities, inspect internal activations:
- **Pooling Layer Outputs:** Arranged in a grid layout.
- **Dense Layer Activation:** Feature vector from the dense layer.
""")
if st.button("Run CNN Analysis"):
spec_tensor = torch.tensor(spectrogram[np.newaxis, np.newaxis, ...], dtype=torch.float32)
model = AudioCNN()
with torch.no_grad():
output, pooling_outputs, dense_activation = model(spec_tensor)
for idx, activation in enumerate(pooling_outputs):
st.subheader(f"Pooling Layer {idx+1} Output")
act = activation[0].cpu().numpy()
num_channels = act.shape[0]
ncols = 4
nrows = math.ceil(num_channels / ncols)
fig, axes = plt.subplots(nrows, ncols, figsize=(3*ncols, 3*nrows))
axes = axes.flatten()
for i in range(nrows * ncols):
if i < num_channels:
axes[i].imshow(act[i], aspect='auto', origin='lower', cmap='viridis')
axes[i].set_title(f'Channel {i+1}', fontsize=8)
axes[i].axis('off')
else:
axes[i].axis('off')
st.pyplot(fig)
st.markdown("**Data Table for Pooling Layer Activation (Channel 1, Sampled)**")
df_act = create_activation_table(act[0])
st.dataframe(df_act)
st.subheader("Dense Layer Activation")
dense_act = dense_activation[0].cpu().numpy()
df_dense = pd.DataFrame({
"Feature Index": np.arange(len(dense_act)),
"Activation Value": dense_act
})
st.plotly_chart(px.bar(df_dense, x="Feature Index", y="Activation Value"), use_container_width=True)
st.dataframe(df_dense)
# --- Section 6: Final Audio Classification (Gender & Tone) ---
st.header("6. Final Audio Classification: Gender and Tone")
st.markdown("""
In this final step, a pretrained model classifies the audio as Male or Female,
and determines its tone (High Tone vs. Low Tone).
**Note:** This example uses a placeholder model. Replace the dummy model and random outputs with your actual pretrained model.
""")
if st.button("Run Final Classification"):
# Extract MFCC features as an example (adjust as needed)
mfccs = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=40)
features = np.mean(mfccs, axis=1) # average over time
features_tensor = torch.tensor(features, dtype=torch.float32).unsqueeze(0)
# Dummy classifier model for demonstration
class GenderToneClassifier(nn.Module):
def __init__(self):
super(GenderToneClassifier, self).__init__()
self.fc = nn.Linear(40, 4) # 4 outputs: [Male, Female, High Tone, Low Tone]
def forward(self, x):
return self.fc(x)
classifier = GenderToneClassifier()
# In practice, load your pretrained weights here.
with torch.no_grad():
output = classifier(features_tensor)
probs = F.softmax(output, dim=1).numpy()[0]
# Interpret outputs: assume first 2 are gender, next 2 are tone.
gender = "Male" if probs[0] > probs[1] else "Female"
tone = "High Tone" if probs[2] > probs[3] else "Low Tone"
st.markdown(f"**Predicted Gender:** {gender}")
st.markdown(f"**Predicted Tone:** {tone}")
categories = ["Male", "Female", "High Tone", "Low Tone"]
df_class = pd.DataFrame({"Category": categories, "Probability": probs})
st.plotly_chart(px.bar(df_class, x="Category", y="Probability"), use_container_width=True)
st.dataframe(df_class)
# -------------------------------
# Style Enhancements
# -------------------------------
st.markdown("""
<style>
.stButton>button {
padding: 10px 20px;
font-size: 16px;
background-color: #4CAF50;
color: white;
}
.stSlider>div>div>div>div {
background-color: #4CAF50;
}
</style>
""", unsafe_allow_html=True)
|